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ABSTRACT

-In-this- work we study-subharmonic solutions near an equilibrium point for %he
Hamiltonian system

z JA(t)z + JHt..(z, t)

where A(t) is a matrix, fl,(z,t) = o(I z 1) and both A and H are periodic in t.
On the linear part of the system we impose a condition expressed in terms of its

symplectic invariants. The higher order term is assumed to be superquadratic near
the equilibrium point, and we show that this condition can be reduced to the center
manifold.
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SUBHARMONIC SOLUTIONS NEAR AN EQUILIBRIUM POINT
FOR HAMILTONIAN SYSTEMS.

§0 INTRODUCTION.
In this work we study the existence of subharmonic solutions near an equilibrium

point for Hamiltonian systems
i = JH,(z,t) (0.1)

where z = (p,q) E R2 n , J denotes the standard symplectic structure in R2' and H,
denotes the partial derivative of H with respect to z.

We assume that the Hamiltonian H satisfies:

(HO) His C 2 nearz=O,

(HI) H(0,t) = 0, H,(O,t)=O VtER,and

(H2) H is T-periodic in the t-variable.

Hypothesis (HO) and (Hi) allows us to write the Hamiltonian as

H(z, t) = 1(A(t)z, z) + II(z, t) (0.2)

where A(t) denotes the Hessian matrix of H at z = 0 and ft(z, t) = o(Iz12) represents
the higher order terms of the Hamiltonian.

We then can rewrite system (0.1) as

= JA(t)z + JH-I (z,t), (HS)

and z = 0 represents an equilibrium point of (HS).

The problem of finding subharmonic solutions near z = 0 for (HS) has been the
object of a considerable amount of work (See [2], (3], (7], (11], (12], and refercnces
therein). The first results are due to Birkhoff and Lewis in 1933, [3]. In 1968 Harris [7]
gave a more general version of the results of Birkhoff and Lewis. And in 1977 Moser
[11] presented an improved version of those mentioned above.

The work in [3] and [7] requires a strong nonresonance condition on the Floquet
exponents of the linearized system. This allows reduction of the Hamiltonian to the
Birkhoff normal form. With an additional assumption of nondegeneracy on the higher
order term they prove the existence of subharmonics. r

Moser in [11] restricted the nonresonance condition only to the Floquet exponents
on the imaginary axis by reducing the probleii to the center manifold. The nonidegener-
acy condition on the higher order terms was also imposed only on the center manifold. 0
Moser presented his results working in the context of symplectic diffeomorphisms rather
than directly with (HS). The differentiability hypothesis on the map was also reduced
to the class C 3. Distribution/
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The work of Rabinowitz in [121 gave another direction in the methodology to attack
the problem. By using minimax techniques of a global nature he proved the existence
of subharmonics. He assumed that the linearized system has all its Ploquet exponents
on the imaginary axis, and different from each other, and that the higher order term
is superquadratic in an appropriate way. He also obtain the result when the linearized
system is trivial, i.e. A(t) - 0.

Recently, Benci and Fortunato [2] gave weaker conditions on the Floquet exponents
of the linearized system, keeping the higher order term k superquadratic.

Comparing the results of [3], [7], and [11] with those in [2] and [12], we see that in
the latter the condition on the linear part is relaxed by assuming a stronger condition
on the higher order term.

In this work we generalize results in [2] and [12]. In the first place we relax the
conditions on the Floquet exponents. In the second place we reduce the system to the
center manifold and we require the higher order terms of the reduced Hamiltonian to
be superquadratic.

A more precise description of the results follows. Let us consider the hnearized
system

= JA(t)z. (0.3)

After a coordinate transformation (0.3) can be written as

_-- =JBz (0.4)

where B is a constant symmetric matrix. The matrix JB can be further transformed
into a canonical form where only symplectic changes of coordinates are allowed.

It is the nature of the canonical fcrm of JB that will determine the possibility of
solving (HS) for subharmonics.

We do not expect to find subharmonic solutions in the case all Floquet exponents
are outside the imaginary axis. See examples in (2] and [11]. Thus we will assume that
there is at least one purely imaginary Floquet exponent. However , as we will see in
Section 3, this is not sufficient.

In Section 2 we will define a Floquet exponent of positive, negative or indefinite
type. This is a symplectic invariant related to a perturbed eigenvalue problem for the
blocks of the canonical form of JB.

In terms of this notion, we assume

(H3) The linear system (0.3) has at least one purely imaginary Floquet exponent that
is not of negative type.

For the higher order term H we will assume

(H4) There are constants r > 0, c > 0, q + 2 > p > q > 2 that

A(Hzt),Z) >! qf(z,t) >! clzP ,
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VzER 2n,lzi _<r and VtER.

Then the following theorem holds.

Theorem I.
Suppose (HO), (HI), (H2), (H3) and (H4) hold. Then there is an integer N so

that for every k > N there exists a nontrivial solution Zk of (HS) with period kT, and

{Zk}.= N converges to zero as k -- oo uniformly in CI(R, R2n).

Remark 0.1. Benci and Fortunato in [2] considered the following hypothesis on the
linearized system (0.3).

(H3') Every symplectic matrix sufficiently close to X(T) has at least one eigenvalue on
the unit circle.

Here X(t) represents the fundamental matrix of (0.3), i.e. X(t) satisfies

X(0) = /2n (0.5)

X(t) = JA(t)X(t). (0.6)

We will show that (H3') implies (H3), but the converse is not true. See Section 3.3.

Remark 0.2. In (12] results similar to Theorem I were given in the case A(t) = B is
constant and either B = 0 or JB has purely imaginary eigenvalues, all different. We
will see that both cases satisfy hypothesis (H3). We note that B = 0 does not satisfy
hypothesis (H3') of Benci and Fortunato.

Remark 0.3. In the election of the names Floquet exponent of positive, negative or
indefinite type we want to reflect the possibility of finding subharmonics for (HS) with
the higher order term H satisfying (H4) or the opposite:

(H4-) There are constants r > 0, c > 0, q + 2 > p > q > 2 such that

ftzt)z) <-f~~): -cjzj P

Yz E R2n, jzi 5 r,Yt E R,

or both. See Remark 3.4.

Remark 0.4 Our hypothesis (H4) is slightly more general that the corresponding one
in [2] and [12]. They assume p = q. This will be needed in the results obtained on the
center manifold. See Section 4.

Remark 0.5. If we further assume that 0 is not a Floquet exponent for (0.3) then
using an argument given in [2], we can prove that the solutions given by Theorem I
have minimal period kT, for k large and prime. This hypothesis requires that the

only T-periodic solution of (0.3) be the trivial one. It will be violated if (HS) is the
variational equation about a periodic solution of an autonomous system.
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Theorem I gives a result generalizing earlier works by relaxing conditions on the
linearized system. The second goal of this work is to generalize condition (H4), that
has to do with the nonlinear term H.

By assuming extra differentiability
(H5) His C' nearz=0,

we reduce system (HS) to the center manifold. Specifically we will obtain a Hamiltonian
system

= JB(t)w + Jkw(w,t), (0.7)

where the linearized system
= JB(t)w (0.8)

has all Floquet exponents on the imaginary axis.
We assume

(116) There are constants c > 0, r > 0, q + 2 > p > q > 2 such that

(K,,(w,t),w) >! q!K(w,t) __cjwj P

VwE R2 m, Iw __ r,VE R.

where 2m is the dimension of the center manifold of (HS).
An application of Theorem I will give

Theorem II.
If (H5), (H), (H2), (M3) and (H6) hold then there exists an integer N so that for

every k > N there exists a nontrivial solution zk of (HS) with period kT and {zk}=
converges to zero as k -- oo uniformly in C1 (R, R2").

Remark 0.6 Since hypothesis (H6) is in general hard to check we are interested in
giving conditions on the original function H that imply (H6).

Roughly speaking, if the superquadratic condition in (114) is satisfied for every z
on the center manifold then (H6) holds. A precise formulation of this condition is given
in Section 4.4.

This work is organized in 4 Sections and 3 Appendices. In Section §1. we recall some
basic results about Hamiltonian matrices. In particular we discuss the canonical form
for Hamiltonian matrices. In Section §2 we define the concept of eigenvalue of positive,
negative and indefinite type, and we study some consequences related to a perturbed
eigenvalue problem for the canonical blocks. In Section §3 we study a generalized
eigenvalue problem associated to (0.3) and we prove a proposition fundamental in the
proof of Theorem I. Then we prove Theorem I. In section §4 we describe the reduction
to the center manifold and we prove Theorem II.

In Appendix A we describe some basic properties of the logarithm of matrices. In
Appendix B we go briefly through perturbation theory for eigenvalue problems with
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symmetric matrices and we apply it to give a proof to the results in Section §3. And
in Appendix C we present the changes necessary to the proof of the Center Manifold
Theorem in order to suit our needs.

I want to express my gratitude to my thesis advisor Professor Paul Rabinowitz for
his guidance, encouragement and patience. Also I want to thank professor E. Zehn-
der who calls to my attention the paper by Laub and Meyer on canonical form for
Hamiltonian matrices.
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§1.BACKGROUND ON HAMILTONIAN MATRICES

In this section we will describe some basic facts about Hamiltonian matrices. In
particular we will present the canonical form of a Hamiltonian matrix; this canonical
form show the symplectic invariants we will use in our study of subharmonics solutions
for (HS).

A constant real matrix C satisfying

Jc"J=C (1.1)

is called Hamiltonian matrix. Here J, as usual, denotes the standard symplectic struc-
ture in R

2,
j 0 1) I= I, (1.2)
J=CI 0'

and r denotes the transpose of a matrix. We note that if B is a symmetric matrix, then
JB is a Hamiltonian matrix, and conversely, if C is a Hamiltonian matrix then B =
JC is symmetric. Hamiltonian matrices correspond to the linear part of autonomous
Hamiltonian systems.

If C is the matrix of a linear system

i = Cz (1.3)

where C is Hamiltonian, then we can transform (1.3) through a linear change of coor-
dinates Q without changing the Hamiltonian structure if Q satisfies

QTJQ = J. (1.4)

A matrix Q satisfying (1.4) is called a symplectic matrix.

The transformation Q-'CQ, with Q a symplectic matrix, defines a similarity rela-
tion. In such a situation canonical forms are of great interest.

Williamson, in (15], obtained the basic results for canonical forms of Hamiltonian
matrices . A more constructive presentation of canonical forms is proposed by Laub
and Meyer [10]. We will take the canonical form as presented in the paper of Bryuno
[4], there simpler canonical forms than in [10] are given.

Before discussing the canonical forms, we state some basic lemmas on Hamiltonian
matrices. For the proof we refer the reader to [10].

Lemma 1.1.
If \ is an eigenvalue of the Hamiltonian matrix C then -A, A and -A are also

eigenvalues of C with the same multiplicity as A. In particular 0 has even multiplicity
if it is an eigenvalue of C.

With respect to the eigenspace associated to an eigenvalue of a Hamiltonian matrix
we have the following lemma.
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Let us define
?lk(A) = ker(C - AI)k, and (1.5)

7(A) = U 1k(A). (1.6)
k>1

Lemma 1.2.
If C is a Hamiltonian matrix and A is an eigenvalue of C then if t is another

eigen value of C, ji :A -A implies

(z, Jw) = 0 Vz E 77(A), Vw E 7().

Corollary 1.1.

If C is a Hamiltonian matrix and Q is an invertible matrix so that

IT = Q-'CQ (1.7)

is the real Jordan canonical form of C, then

Q JQ = diag(ql, q2,, q) (18

is a block diagonal matrix with one block qj for each pair (A, -A) of eigenvalues of C.

Even though the real Jordan canonical form of a Hamiltonian matrix already shows
some special structure, it is not enough for our purposes. The next theorem gives
the (real) canonical form of a Hamiltonian matrix when only symplectic changes of
coordinates are allowed. The proof can be found in [4] and [15].

The following notation will be useful in this and the next sections.(0 ..0o) 0 .
1 ... 0 0 0... 1 0

d=(. . J, K=( . .K= (1.9)
(0... 1i0 (1...oo0
A =diag(1,0,...,0) and I= I,,. (1.10)

The size of each matrix will be easily determined by the context.

Theorem 1.1.
If C is a Hamiltonian matrix then there exists a symplectic matrix Q such that

D 1  0 ... 0 D21 0 ... 0
0 D 12 ... 0 0 D 2 2  ... 0

Q'CQ 0 0 ... Di, 0 0 ... D2,
D31  0 ... 0 D 4 1  0 ... 0

0 D32 ... 0 0 D 4 2 ... 0

0 0 ... D3, 0 0 ... D4
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where the matrix formed by combining blocks in the same relative position

= (Dh D2) (1.12)D (= D3j D4i)

has a simple form analogous to the real Jordan canonical blocks. Every block is as-
sociated to one eigenvalue of C, but there can be more than one block for a specific
eigenvalue. More precisely the matrices Di, that we call generically D, can have one of
the following forms:

1. Block of C1 type.
Block associated to an eigenvalue A = a + ifl, a > 0, 8 > 0 of multiplicity 1.

cxl+ d -/#1 0 0

S /I aId 0 0 (1.13)0 0 -alI- d' )1 )

0 0 3a - dr

Here D is a 41 x 41 matrix.

2. Block of C2 type.
Block associated to an eigenvalue A = a, a > 0 of multiplicity 1.

D1 = d)r (1.14)

Here D is a 21 x 21 matrix.

3. Block of C3 type.
Block associated to an eigenvalue A = if/, fl > 0 of multiplicity 1.

D = oa 0I(l +P +) d-

Here D is a 21 x 21 matrix. The number a can be I or -1, and it is an additional
symplectic invariant.

4. Block of C4 type.
Block associated to the eigenvalue A = 0 of multiplicity 1 odd.

Here D is a 21 x 21 matrix.

5. Block of C5 type.
Block associated to the eigenvalue A = 0 of multiplicity I.

D d d(1.
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Here D is a 21 x 21 matrix. The number a can be 1 or -1, and it is an additional
invariant.

Remark 1.1. If we compare with the real Jordan canonical blocks, we see that the
canonical blocks described in the theorem are more complicated and cases C3 and C5
carry an extra invariant, namely a.

In what follows we only be interested in blocks of C3, C4, and C5 type, i.e. in
blocks corresponding to purely imaginary eigenvalues.

The following lemmas are rather obvicus, but we state them for later reference.
In the case of a block of C3 type we can write

D = -a3V -uW (1.18)

where

V ( 0 -K) and W -(I t d -Kd)O (1.19)

Lemma 1.3.
1. V and W are Hamiltonian matrices.
2. VJ and WJ are symmetric matrices.
3. V commutes with W and J.
4. V is invertible, and W is nilpotent.

Proof. Parts 1., 2. and 4. are direct and part 3. requires an easy computation. (

Lemma 1.4.

exp(27rV) = 1 (1.20)

Proof. Noting that KK = I, for a E R we have

exp(aV) = I + 1- 2! 1

1 ! 2!-+
= cos(a)I + sin(a)V.0

§2. PERTURBED EIGENVALUE PROBLEM FOR
THE CANONICAL BLOCKS.

This section is devoted to the definition of eigenvalue of positive, negative or indef-
inite type, in the case of purely imaginary eigenvalues of Hamiltonian matrices.

The definitions we are going to make are motivated by the application to subhar-
monic solutions of Hamiltonian systems that we will present in next section. However,
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we can already see the meaning of these definitions in studying some perturbed eigen-
value problems for the canonical blocks. In Section §3 we will see how this is related
to the existence of subharmonics for the Hamiltonian system (HS).

§2.1. Definitions.

In the following definitions we assume we have a Hamiltonian matrix C, and we
have obtained a symplectic transformation Q that takes C into its canonical form. D
will denote a generic block in the canonical form of C as given by Theorem 1.1.

Definition 2.1. We say that a 21 x 21 block D is positive (negative) if one of the following
is true:

1. D is a block of C3 type, 1 is even and a = 1 (a - -1).
2. D is a block of C5 type and a = 1 (a = -1).

Definition 2.2.If A is a purely imaginary eigenvalue of the Hamiltonian matrix C we
say that A is of positive type (negative type) if all blocks associated to \ are positive
(negative). We say that A is of indefinite type if A is not of positive type nor of negative
type.

Remark 2.1. The concepts of positive, negative and indefinite type are symplectic
invariants.

Remark 2.2. See Remark 3.6 for a perturbation result for blocks of positive type and
of negative type.

§2.2. Perturbed eigenvalue problems.

Given a block D of the canonical form of a Hamiltonian matrix, that is of C3, C4
or C5 type we will define an associated eigenvalue problem depending on a parameter C.
Using perturbation theory we can study the behaviour of the eigenvalues of the problem
as a function of E. In particular we are interested in the sign of the small eigenvalues
for small values of the parameter e. The results are given in Propositions 2.1, 2.2 and
2.3. We delay the proof of these propositions to Appendix B.

Case 1. Block of C3 type. Using the notation given in Section §1 we can write a
block of C3 type in the form

D = -ao,3V - aW (2.1)

where V and W were defined in (1.19).
Let us consider the following eigenvalue problem

-(EV + aW)v + AJv = 0 (2.2)

where f E R and v E R 2 1. We study the eigenvalue A as a function of e.
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This problem is equivalent to

(EVJ + aWJ)w + Aw =0, w = Jv. (2.3)

From Lemma 1.3 we know that this is a symmetric eigenvalue problem, so that the
behaviour of the eigenvalues of (2.3) near e = 0 can be determined by using the pertur-
bation theory for such problems.

The simplest case occurs when the block D in question is 2 x 2 , i.e. I = 1. Then
we have

vi=~~ and WJ=( 0 ).(1 00
Obviously 0 is an eigenvalue of WJ of multiplicity 2, and for e : 0, (2.3) has

A(e) = -6 (2.4)

as a double eigenvalue.
The situation in the general case is more complicated. It is easy to see that the

matrix WJ has 0 as an eigenvalue of multiplicity 2. We want to determine what happens
to this eigenvalue for small f 0 0. From Theorem B.1 we know that the eigenvalues of
(2.3) are analytic functions of e near e = 0. Thus A = 0 will be continued as

A,(6) = A+ + ... j = 1,2. (2.5)

Since the matrix V is invertible, W is nilpotent and, V and W commute, the matrix
(eV + aW)J is invertible. Consequently in the series (2.5) there is at least one nonzero
coefficient. The following proposition determine the first nonzero coefficient.

Proposition 2.1.
If the block D is 21 x 21 then the series (2.5) can be written as

Aj(E) = a-(-E)I + ... j = 1,2. (2.6)

Proof. See Appendix B.0

Remark 2.3. If D is a positive block of C3 type then according to Definition 2.1 1 is
even and a = 1, this implies that

Aj(E) ='Et +... j = 1,2

is positive for e 0 0 in a neighborhood of 0. If D is a negative block then Aj(6) is
negative near zero. If D is not positive nor of negative type then Aj(e) takes positive
and negative values near 0.
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Case 2. Block of C4 type. We recall that a block of C4 type, according to Theorem
1.1 has the form

D =(d 0') (2.7)
(0 -d

here D is a 21 x 21 matrix, with I being odd.
As in the case just treated we will consider an eigenvalue problem

(6I + D)v + AJv = 0, (2.8)

with v E R2t and 6 E R, or equivalently

(-EiJ - DJ)w + Aw = 0, w = Jv. (2.9)

The matrix DJ is easily seen to be symmetric, and iJ is hermitian. We can treat (2.9)
using perturbation theory as before. The eigenvalues continuing A = 0 have the form
(2.5) and the next proposition determine the first nonzero coefficient in the series.

Proposition 2.2.
If the block D is 21 x 21 of C4 type then the series (2.5) can be written as

Aj(e) =-1J +.. j = 1,2. (2.10)

Proof. See Appendix B. 0

Remark 2.4. We observe that for e small Aj(e), j = 1, 2 takes positive and negative
values. According to Definition 2.1 a block of C4 type is not positive nor negative.

Case 3. Block of C5 type. Now we turn to study blocks of the C5 type, where again
the invariant a appears.

From Theorem 1.1, a block of this type is of the form

D o _d r

with D a 21 x 21 matrix and a = 1 or -1.
We consider the eigenvalue problem

(eiI + D)v + AJv = 0, (2.11)

with v E R2 and E E R, or equivalently

(-EiJ - DJ)w + Aw = 0, w = Jv. (2.12)

DJ is symmetric and iJ is hermitian. We apply again perturbation theory.

13



Proposition 2.3
If the block D is 21 x 21 of C5 type, the eigenvalue of (2.12) continuing A = 0, can

be written as
\(E) = ae ( 2 + ... (2.13)

Proof. The proof of this proposition goes through the same lines as as the proof of
Proposition 2.1 and 2.2. We omit it.*

Remark 2.5. By analyzing (2.13) in the case D is a positive block we can see that A(e)
is positive in a neighborhood of e = 0. Similarly if D is negative then A(e) is negative
near e = 0.

§2.3 iir as a special eigenvalue of a Hamiltonian matrix

If we want to study a Hamiltonian system like

_;= JA(t)z + o(IzI),

and we assume that A(t) =_ A is constant then JA is a Hamiltonian matrix and we can
apply the Definitions 2.1 and 2.2 to JA. If A(t) is time dependent then, using Floquet
theory we can transform the system to one with a constant linear term. However if the
system has negative Floquet multipliers we need to deal with a new situation.

Hamiltonian matrices can be obtained from symplectic matrices by taking the log-
arithm. A special situation arises when the symplectic matrix has negative eigenvalues.

To begin we recall some results that are the symplectic analogues of Lemmas 1.1
and 1.2. The proofs can be found in [10].

Lemma 2.1.
If A is an eigenvalue of a symplectic matrix X then I/A, X, I/A are also eigenvalues

of X with the same multiplicity as A. In particular 1 and -1 have even multiplicity if
they are eigenvalues of X.

Let us define

k(A) = ker(X - AI)k, and (2.14)

(A) = G ck(A), (2.15)
k>1

and similarly ak(A) = ker(X - 1 - AI)k, and 
(2.16)

(A) U . (2.17)

k>1

Then we have
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Lemma 2.2.
If X is a symplectic matrix and A is an eigenvalue of X then1. o)= 1/\
2. IfH is another eigenvalue of X then ju 0 1/A implies

(z, Jw) = 0 Vz E (A), Vw E ().

Corollary 2.1.
If X is a symplectic matrix and Q is an invertible matrix so that

J= Q-XQ (2.18)

is the real Jordan canonical form of X, then

QrJQ = diag(ql, q2 , ... , qp) (2.19)

is a block diagonal matrix with one block qi for each pair (A, 1/A) of eigenvalues of X.

For X symplectic let us consider

C = log(X) (2.20)

where log denotes the logarithm defined in Appendix A. If X does not have eigenvalues
on the negative real axis then C is a real Hamiltonian matrix (See Lemma A.2 and A.3).
However, if X has negative real eigenvalues C is no longer real. The matrix C is not
Hamiltonian in the sense we defined before, but it satisfies

JC*J = C (2.21)

where * denotes the conjugate transpose of C. For such a matrix C we want to have
'real' canonical forms. We will reduce this question to Theorem 1.1.

Let us assume that X has 2p negative eigenvalues, and let us reorder J as

= J q ) (2.22)

where Jp and Jq are the standard symplectic structures in R2P and R2q respectively.
Here q = n - p. From Lemma 2.2 there is an invertible matrix Q so that

QrJQ=J (2.23)

and
Y = Q- 1 XQ (2.24)
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is a block matrix

Y Yp 0(2.25)0 Y

with
YJYj -- Jj, j=p,q (2.26)

and Y, has only negative eigenvalues, while Y does not have negative eigenvalues.
Let

Sj = log(Yj), j=p,q (2.27)

then, by Lemma A.3, we have

JS;JJj = S j =p,q. (2.28)

Lemma A.2 guarantees that Sq is real, and Lemma A.4 gives that

Sp = i-rI2 p + 3, (2.29)

where Sp = log(-Y) is a real matrix, and 1 2p is the identity in R2p .
From (2.28) we see that 9p satisfies

S= 9p (2.30).

If we define

=(12P 0) and S(~ *g2q)0=I~ 0 0 q

then we have
log(Y) = ir! + S (2.31)

and the real matrix S satisfies

15 W = S. (2.32)

If we define
Ci = 7rQIQ-1 and Cr = QSQ-1  (2.33)

then from (2.31) (2.32) and the block structure of I, j and S the following hold

C = iCi + Cr (2.34)

JCrJ = C, (2.35)

JCJ = -Ci, and (2.36)

CiCr = CrCi. (2.37)
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If -1 is an eigenvalue of X of multiplicity 2k then 0 is an eigenvalue of multiplicity 2k

of . . and from (2.30) Sp is a Hamiltonian matrix. We have the following extension of
Definition 2.2.

Definition 2.3.Let X be a symplectic matrix, and C = log(X). If -1 is an eigenvalue
of X of multiplicity 2k, then iir is an eigenvalue of C of multiplicity 2k and we say that
ir is of positive type (negative type or indefinite type) if and only if 0 is an eigenvalue
of positive type (negative type or indefinite type) of the matrix Sp.

§3.PROOF OF THEOREM I.

In this section we begin the study of the Hamiltonian system (HS)

, = JA(t)z + JH(z,t)

where the Hamiltonian function is

H(z, t) = -(A(t)z, z) + Hf(z, t) (3.1)

and we assume it satisfies the basic hypotheses:

(HO) H is of class C 2 near z = 0,

(H1) H(0,t)=0andH.(0,t)=0 VtER,

(H2) H is 1-periodic in the -variable.

Assuming that H is 1-periodic instead of T-periodic does not restrict the analysis.
Under these hypotheses (HS) represents the Hamiltonian system

z = JH,(z,t), (3.2)

A(t) is the Hessian matrix of H with respect to z at z = 0, and H represents the higher
order terms of H, H(z,t) = o(1z12 ) uniformly in t, for z near 0.

Let us consider the linear system

= JA(t)z. (3.3)

If X(t) is the fundamental matrix if system (3.3), i.e.

X(O) = 12n (3.4)

A'(t) = JA(t)X(t) (3.5)

we define X = X(1) and C = log(X), where the logarithm is defined in Appendix A.

The eigenvalues of C are called the Floquet exponents of (3.3). We will assume
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(H3) There is at least one Floquet exponent of (3.3) on the imaginary axis that is
not of negative type.

In other words, (H3) says that C has at least one purely imaginary eigenvalue that is
not of negative type. Finally we assume

(H4) There are constants c > 0, r > 0, q + 2 > p > q > 2 such that

>fzt,) qf (z,t) > clzlP (3.6)

VzER2 ", 2 zi_<r, VtER.

In this section we will prove

Theorem I
If (HO), (Hi), (H2), (H3) and (H4) hold, then there is an integer N so that for

every k > N, there exist a nontrivial solution zk of (HS) with period k, and {zk}k>N
converges to zero as k --+ oo uniformly in C1(R, R2n).

Remark 3.1. In Section §4 we will see that adding some differentiability to H we will
be able to prove the result of Theorem I under less restrictive conditions than (H4),
namely we need only to assume (3.6) holds on the center manifold of (HS).

The proof of Theorem I is presented in the next two sections. We begin in Section
§3.1 by proving a result on a generalized eigenvalue problem associated to (3.3). For
that purpose we transform (3.3) to a linear system with constant coefficients and then
we analize the resulting system in terms of the canonical form associated to it. Next we
study the nonlinear problem in Section §3.2 using variational methods.

§3.1 The Linearized Problem.

The proposition we will prove now is the basis of the proof of Theorem I. It is
here that hypothesis (H3) is crucial. We will first reduce system (3.3) to a system
with constant coefficients via Floquet Theory. Because the matrix X = X(1) can

have negative eigenvalues we will need to introduce complex matrices or change our
periodicity condition on the solutions. We prefer the second, because in Section §4 this
will be more convenient.

Let R be a matrix so that R 2 = I.

Definition 3.1.
Let k E N, a function z : R - R2n is said to be Rk-periodic if

z(t + k) = Rkz(t) Vt E R. (3.7)

We note that every R-periodic function is 2-periodic.

Lemma 3.1.
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There are matrices C, R and P(t) so that C, is Hamiltonian, R 2 = I, P(t) sym-
plectic and P(t + 1) = P(t)R Vt E R for which we have

z(t) is a k-periodic solution of (3.3) if and only if

0() = P(t) - l z (t)

is an Rk-periodic solution of
= C, . (3.8)

Proof. The proof is an application of Floquet theory. Let X(t) be the fundamental
matrix of (3.3) as defined above. Since (3.3) is Hamiltonian X(t) satisfies

X(t)-JX(t) = J Vt E R. (3.9)

To obtain (3.9) we differentiate the matrix Z(t) = X(t)rJX(t) and use (3.4), (3.5) and
the fact that A(t) is symmetric. Identity (3.9) says that X(t) is symplectic for every
t E R, consequently X = X(1) is symplectic.

By Lemma A.3 there is a matrix C so that

X = exp(C), and (3.10)

C = JC*J. (3.11)

As we have mentioned before C is not necessarily real because X can have negative
eigenvalues. However we can always decompose C as C = iCi + Cr with Ci and Cr
satisfying (2.35), (2.36) and (2.37).

Let us define
P(t) = X(t)exp(-Crt) (3.12)

then P(t) is invertible and obviously

X(t) P(t)exp(C~t). (3.13)

Since X(t) is symplectic and C,. satisfies (2.35) P(t) is also symplectic, i.e.

P(t)t JP(t) = J. (3.14)

On the other hand, since (3.3) is 1-periodic it is easy to see that

X(t + 1) = X(t)X(1).

Therefore
P(t + 1) = X(t + 1)exp(-Cr(t + 1))

= X(t)X exp(-C) exp(-Crt + iC) (3.15)

= X(t) exp(-C, t) exp(i C)

= P(t) exp(iCi).
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where we used (2.37) and the definition of P(t). If we define

R = exp(iC,) (3.16)

then from the definition of Ci, (2.33),

R 2 = 1 (3.17)

and what we showed in (3.15) becomes

P(t + 1) = P(t)R. (3.18)

Finally we have the following identity obtained from differentiating (3.14) and using(3.5)
P(t) + P(t)Cr = JA(t)P(t). (3.19)

Let z(t) be a k-periodic solution of (3.3), and 6(t) = P(t)-z(t). Then by differentiating
z(t) = P(t)6(t) and using (3.3) we obtain

P(t)6(t) + P(t) (t) = JA(t)P(t) (t). (3.20)

Using (3.19) in (3.20) and multiplying by P(t)- 1 we have

Since P(t) satisfies (3.18), and z is k-periodic we have

6(t + k) = R'6(t).

The reverse implication is also easily obtained.*

Next we prove a lemma that will be used in Section §4, which is a sort of inverse
of Lemma 3.1 in the sense that finding Rk-periodic solutions of a system like (3.8) is
equivalent to find k-periodic solutions of a system with variable coefficients. Note that
this is not given by Lemma 3.1 because in this situation we do not have the fundamental
matrix X(t) available.

We defined R in (3.16) in terms of Ci. We recall that Ci was defined in (2.33) as

Ci = rQf- 1

where Q is a symplectic matrix, and I is given by,(2o 0)
00

and I2p is the identity in R2p .
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We can write the matrix R in a different way, and we do it now. If

00

with

12 o)' (3.22)

then it is easy to see that for the matrix

5i = rQIQ- 1  (3.23)

we have
R = exp(C ). (3.24)

Lemma 3.2.
6(t) is an Rk-periodic solution of

~C6

if and only if w(t) = R(t)6(t) is a k-periodic solution of

tb = (R(t) + R(t)Cr)R-l(t)w

where R(t) = exp(&2t).

Proof. By direct calculations.*

Remark 3.2. We note that in general the matrices Ci and Cr do not commute. That
is the reason why we cannot use C, + C, as the logarithm of X.

The following proposition is fundamental.

Proposition 3.1.
Assume the linear system (3.3) satisfies (H3). Then there is a 1-periodic, continuous

matrix function U(t), that is symmetric and positive definite, such that for every k E N
there is a k-periodic function zk, and a number Ak, Ak > 0 and Ak = O(1/k) as k --- oc,
satisfying

= JA(t)z + AJU(t)z. (3.25)

In other words the generalized eigenvalue problem (3.25) has at least one eigenvalue
Ak > 0 with Ak = O(1/k) as k --* oo.

Proof. From Lemma 3.1 we can transform (3.3) into
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with Cr a Hamiltonian matrix. Let N be the canonical form of Cr as in Theorem 1.1.
Then there is a Q so that

Q"JQ = J and (3.26)

Q-'C,Q = N. (3.27)

From hypothesis (H3) we know that N has at least one eigenvalue A that is purely
imaginary and not of negative type. For that eigenvalue there exists a 21 x 21 block D
that is not negative.

Let k E N, and consider the following eigenvalue problem

= Dx + AJx, x(O) = x(k) (3.28)

where x E R21 , A E R and J is the standard symplectic structure in R2 . We do not
distinguish the dimension; it will be clear from the context.

The block D can be of C3, C4, or C5 type. We analyze each case separately.

CASE 1. Block of C3 type.
In this case A = if, fP > 0, and the matrix D has the form given by (1.18)

D = -afPV-aW (3.29)

Let a E [-2r, 27r] so that exp(-ia) = exp(-iojpk); we determine the sign of a later.
The eigenvalue problem (3.28) is related to

-(aV + kaW)v + AkJv = 0. (3.30)

In fact, let us assume (A, v) satisfies (3.30) and let us define

Xk(t) = exp((-oj3V - aW + AJ)t) v (3.31)

Certainly Xk(t) satisfies the differential equation in (3.28), but it also satisfies the bound-
ary condition

Xk(k) = exp(k(-oj3V - aW + AJ)) v

= exp(-o/kV) exp(-akW + \kJ) v

= exp(-aV) exp(-okW + AkJ) v
= exp(-aV - akW + AkJ) v

=

here we used Lemmas 1.3 and 1.4, the definition of a and (3.30). Thus it is enough to
study (3.30).

Dividing (3.30) by k we get

-(CV + UW)v + AJv = 0 (3.32)
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that is exactly the eigenvalue problem (2.2), with e = a/k. Because D is not negative,
considering ci with the adequate sign, from Proposition 2.1 we have that for every k
large enough there is a Ak > 0, an eigenvalue of (3.32) and hence of (3.30). Moreover
Ak = 0(1/k).

Thus, for every k E N large enough, (3.28) has an eigenvalue Ak > 0, with Ak =

0(1/k) and associated eigenfunction xk that is k-periodic.

The remaining cases correspond to blocks of C4 and C5 type. These blocks have
two possible origins, they can come from an eigenvalue 0 of C or from the eigenvalue iir
of C. We distinguish between the two possibilities.

CASE 2. Block of C4 type ( A = 0 is an eigenvalue of C) In this case the matrix D
has the form o(0 d'.
Let a = 27r and consider the eigenvalue problem

(aiI + kD)v + \kJv = 0. (3.33)

If (A, v) is a solution of (3.33) then the function

Xk(t) = exp((D + AJ)t) v (3.34)

satisfies equation (3.28). Using (3.33) we see that

Xk(k) = exp(kD + AkJ) v
= exp(27ri1 + kD + AkJ) v

-V

so that Xk is k-periodic. Thus it is enough to solve (3.33), but dividing (3.33) by k we
see that it corresponds exactly to the eigenvalue problem (2.8) with e = 27r/k

(27riI + D)v + AJv = 0

and Proposition 2.2 guarantees that for large k there is a Ak > 0, Ak = O(1/k), an
eigenvalue of (3.33). Thus we have obtained the same conclusion as in Case 1.

CASE 3. Block of C4 type (corresponding to the eigenvalue A = ir of C). Here we
proceed as in Case 2 but we will take

7r if k is odd
27r if k is even

The only difference with Case 2 is that the corresponding function Xk will satisfies

Xk(k) = (_,)k X(0).
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CASES 4 and 5. D is a block of C5 type (corresponding to A = 0 or ir of C).
This cases are similar to Cases 2 and 3 respectively. We note that D is of positive type
so that from Proposition 2.3 we can guarantee that the eigenvalue Ak can be chosen
positive and also of order O(1/k).

Now we summarize what we have. From (2.33) and (3.16) we see that

R = QRIQ-1

where
R, = - 1 2pO IO

Then, what we have shown is that the eigenvalue problem

= N + AJ , (k) = Ri(0) (3.35)

has an eigenvalue Ak > 0, Ak = 0(1/k) with eigenfunction ck, for any k E N large
enough.

Changing coordinates, wk(t) = Qk(t) satisfies

tb = Crw + AQJQ- 1w, w(k) = Rkw(O). (3.36)

Finally defining
Zk(t) = P(t)wk(t) (3.37)

and
U(t) = -JP(t)QJQ- 1P(t)- 1, "(3.38)

using the same argument of the proof of Lemma 3.1, we see that

Zk = JA(t)zk + AkJU(t)zk, and

Zk(k) = Zk(O).

It is only left to prove that U(t) is symmetric and positive definite. Because Q and P(t)
are symplectic we have

QT J = JQ-1  and P(t)rJ = JP(t)- ' (3.39)

and then from (3.38) and (3.39) we obtain

U(t) = JT P(t)QQrP(t)yJ, (3.40)

from where U(t) is clearly symmetric and positive definite. A simple computation using
(2.33), (3.16) and (3.18) will show that U(t) is also 1-periodic.<
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§3.2 The Nonlinear Problem.

Now we give a proof of Theorem I. We start with some preliminaries.
Let us consider the eigenvalue problem

-Ji - A(t)z = AU(t)z (3.41)

in L 2([O, k], R2-) = L2 with periodic boundary conditions. Here U is the matrix function
defined in Proposition 3.1. In L 2 we will consider two inner products

rk

(u,v)2 -= J (u(t), v(t)) dt, and (3.42)

k

< >2= 10 (U(t)u(t),v(t))dt. (3.43)

Let I 12 and i1" 112 be the norms induced by (., ")2 and < -,. >2 respectively.
Since the matrix function U(t) is periodic, continuous and positive definite there is

a constant a > 0 such that

1 <1 U(t) j a Vt E R, and (3.44)
a

-<1U(t) -  I a Vt R. (3.45)

a

where . denotes the L(R 2n , R2n ) norm induced on matrices (using the usual norm in
HR2 n).

Lemma 3.3.
There are constants cl > 0 and c2 > 0 independent of k so that

Iu 12< c II u 112 and (3.46)

i1 U 112< C2 I U 12 Vu E Lk. (3.47)

Proof.

I = (u(tu(t)) dt

= u(t), u(t)) dt (3.48)

=< U(t)-ZLu,u >2

< IU-'U 11211 U 112.
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But from (3.45)

UI u _ = j(u(t), U(t) ' (t))dt (3.49)

Thus, from (3.48) and (3.49) we obtain

I1 U125 V/a II 112

On the other hand
k

2 jj[ = jo (U(t)u(t), u(t)) dt (3.50)

--1 Uu 121 U 12-

But
Pk

Uu = o (U(t)u(t), U(t)u(t)) dt (3.51)

so, from (3.50) and (3.51) we obtain

lU 112< va IU 12.

Taking cl = c2 = V/a we get (3.46) and (3.47).*

For the eigenvalue problem (3.41) we have the following standard result.

Lemma 3.4.
The eigenvalue problem (3.41) possesses a sequence of eigenvalues {Vj}jEZ that

extends from-oz to+oo. Each eigenvalue is isolated and has finite multiplicity. As-
sociated to the eigenvalues there is a basis of L', composed of eigenvectors {vj},Ez,
orthonormal with respect to the inner product <, >2.

Proof. We only give the general idea of the proof. First, by making a transformation
like that of Proposition 3.1, and taking in account the way U was defined we can
transform system (3.41) into a system with constant coefficients. Second, by taking an
appropriate trigonometric basis in L .we transform this constant coefficient differential
equation into a matrix one, where the eigenvalues can be calculated. The trigonometric
basis gives rise to eigenvalues ±n with a constant correction coming from the constant
term. 0

Remark 3.3. By Proposition 3.1 there is an eigenvalue Ak > 0 of (3.41) with Ak =

0(1/k) as k -- oo.

In order to study the existence of subharmonics of (HS) we will study the critical
points of a functional. Let E be the Sobolev space W; /2 2(R, R2n). For details about
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the definition of E and the -operators we define next we refer the reader to [131: For
z = (p, q) E E and smooth we "d-fine

Q(z)= q - (z,A(t)z) dt. (3.52)

If C = (cp, z) E E is also smooth we can define the bilinear form

B(z, k) Ob + qco - (z, A(t)() dt
0 k (3.53)

= (-Ji- A(t)z,()dt.

Both Q and B can be extended continuously to all E, and

-B(z,z) = Q(z) Vz E E. (3.54)
.2

Using Lemma 3.4 we can define the following closed subspaces of E

E+ = pani/ vi > 0}

E- = spanjvi/ vi < 0}, and

E' = span{i/ v i = 01.

It is easy to see that Q is positive in E+, negative in E- and zero in E ° . Also for
z = z + + Z + z z z+ E E+,z - E E- and z' E El we have

Q(z+ + z- + z') = Q(z+) + Q(z-). (3.55)

Moreover, we have the following lemma.

Lemma 3.5.
If we define II z I1= Q(z+) -Q(z)+ f1 ZO 12 dt for every z E E, then there axe

constants c3 and c4 such that

C3 11 Z Z <I E_< C4 11 z IIQ (3.56)

i.e. 11-lie is an equivalent norm in E.

Proof. For proving this lemma we would proceed as in Lemma 3.4 passing to the equiv-
alent definitions of Q and 1 " JJQ for an equivalent system with constants coefficients,
where the lemma is clear.,

As mentioned above in order to find suhharmonics solutions of (HS) we will use a
variational approach. In particular we will use a version of the generalized Mountain
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Pass Theorem due to Benci and Rabinowitz. We state this theorem here and we refer
the reader to [13] for its proof.

Theorem 3.1.
Let E be a realHilbert space with E = El ( E 2 and E 2 = EIL. Suppose I E

CI(E.R), satisfies the Palais-Smale condition, and
(I,)I(u) = (Lu,u) + b(u), where Lu = L 1P1u + L 2 P2 u and Li : Ei -* Ei is

bounded and selfadjoint, where Pi : E -- Ei is the orthogonal projection, i=1,2,
(12) b is compact, and
(13) there exist a subspace t C E and sets S C E, Q c t and constants a > W

such that
(i) S C El and Ils > a,
(ii) Q is bounded and IaQ < w,
(iii) S and aQ link.
Then I possesses a critical value c > a.

Proof of Theorem I.

The proof follows the lines of the proof of Theorem 1.1 in [2] by Benci and Fortunato.
We will first consider a globally defined Hamiltonian following a trick introduced by
Rabinowitz.

Let 0 E CO(R, R) such that ?P'(s) < 0 for s E (r/3, r/2) and

1 ifs<r/3
0 ifs>r/2

where r was introduced in hypothesis (H4). We define the globalized Hamiltonian, by
extending the higher order term

H(z, t) = 0(1 z )H(z, t) + R(1 - 0(1 z j)) z . (3.57)

By choosing R > 1 large enough and using hypothesis (H4) we can show that

(H(z, t),z) > q H(z,t) Vz E R2 ". (3.58)

Also from hypothesis (H4), for a positive constant c5

H(z,t) > c5(0(I z) zI P +R(1 - 0k(I z )) I z 11) Vz ER 2 (3.59)

and from the definition of H we see that there is an M > 1 so that

H(z,t) =RIz q,  Vz R " ,  z 1 M . (3.60)

We define the functional

fk(Z) = Q(z) - j f(z, t) dt (3.61)
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for all z in E. It is well known, see [13], that under our hypothesis fk is well defined in
E, of class C 1 and the critical points of fk are classical k-periodic solutions of

= = JA(t)z + JHf(z,t). (3.62)

In order to prove the existence of critical points for fk we will use min-max arguments.
Specifically we will use Theorem 3.1 stated above, which requires that the linking con-
dition given in (i), (ii) and (iii) be satisfied.

From (3.58) and (3.59) and assuming without loss of generality that r < 1 there
are positive constants c6 , c7 and c8 so that

H(z,t) >_ c6 I z Iq -C7, Vz E R2n (3.63)

H(z,t) < C8 I z 1q, Vz R2-  (3.64)

Now we can prove the linking conditions. Let z E E + , then from (3.64)

k

fk(z) =11 z t11 -j H(z, t)dt

Zok (3.65)
-I IIII j Z q  dt

where I •l denotes the usual norm in the space LQ([0, k], R2 n) that we will write as Lk.
As is well known, see [13], for every s > 1 there is a constant a(s) so that

Iv jI< a(s) 1I V 1[E . (3.66)

Then (3.65), (3.66) and Lemma 3.5 imply the existence of a constant c9 such that

fk(z) :S11 z 1Q -C9 1 z ,. (3.67)

Now (3.67) shows there are constants p > 0 and a > 0 such that

fk(z) > a > 0, Vz E E + , I z IIQ= p. (3.68)

On the other hand, let R, and R 2 be two positive numbers to be determined later.
Let Ok be one eigenfunction of (3.41) associated to the eingenvalue Ak we found in
Proposition 3.1. Assume 11 Ck 12 = 1. Let

Qk = {v + sqk/ v E E 0 + E - , II v IiQ - R2 and 0 < s < R,
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Then for z = v0 + v- + sek we have

fk(z) =Q(z) - /kf(z,t)dt
O k0 (3.69)

11 -II- 11 +2s 2 Ak - I(v +s k,t)dt.

If s = 0, from (3.69) we have
fk(z) < 0. (3.70)

On the remaiing part of aQk we also have this inequality. Using (3.63) and H6Ider
inequality in (3.69) we have

fk(v + Sqk) - - + s2A - 6k{ - 1/} 1 V + Skk I2 +c 7 k. (3.71)

By Lemma 3.3, and the orthogonality of E+, E- and EO with respect to <, >2

I V + Sek 2 -_11 V + S'k I2a
1(II v0 112 +s2) (3.72)

> 1v 0 12+1s2
a2 2 a

Thus, for a constant c10 > 0

I v + sk 12 > cIO(I V° q +sq). (3.73)

Using (3.71) in (3.73) we get

fk(v + Sq~k) K 1!S2Ak - 11V_ 11 2 -c11( v 0 q -3 q ) -± C7 k (3.74)

From (3.74) we find R1 and R 2 so that with (3.70) we obtain

fk(z) < 0 Vz e aQk. (3.75)

See details in [13J. Now (3.68) and (3.75) imply the linking condition is satisfied. The
functional fk- also satisfies the Palais Smale condition as can be shown by standard
calculations. Thus fk possesses a critical point Zk, that according to the min-max
characterization satisfies

0 < < fk(Zk) :5 c,, = Sup{fk(z)/ z C Qk}
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Next we are interested in knowing the behaviour of the critical value fk(zk) when k is
large. We will show that

C
0 < fk(zk) < ' (3.76)

with -y= Min{2/(p- 2),(q -p+ 2)/(q- 2)},

and C independent of k. We note that because q + 2 > p > q > 2, the exponent -y is
positive.

Let z = v + sqk,v E E- E Es E [0, R 1], then by (3.59)

fk(z) < Aks 2  I k H(z,t) dt

* 1-AkS 2 - .cj 0(I Z ) 1 z IP +R(1 - 0(I z 1) 1z 1q dt (3.77)

p>q kk k

f~~o(}~ 2 )zI ( - C' ( Z 1) 1q dZ _ +o(I z  z d
* -Ak fX 0( )1ZIq (3.78

where XA and Xt; are the characteristic functions of A and B respectively. Using the
H61der inequality and p > q we have

0k z I +XB I q dt >

fk k2k2 q2} ct]
> k{2-p/2)( XAz 2 dt) p/ 2 + k 2 /2)(j 0 Xsz 2 dt) q/ 2

,Io '(3.79)

> k{2-P/ 2}((I I XAZ 12 dt)p/ 2 + ( I XBZ I dt)q/ 2 ).
dOo

We will distinguish two cases, in order to obtain (3.76).
Case 1. f z 2 dt > f, XB I z j2 dt. In this situation we clearly have

kO I p+ '{IZI 2-p/21

0 p2 dI I 2 (3.80)I ,1 lp +  2112 "z~

Then from (3.77), (3.78), (3.79) and (3.80) we obtain

fk(z) < 1As2 _ c1 2 k(2-,/2 z - (3.81)
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using (3.73), and recalling that c10 does not depend on k, we have

A(z) < A S2 
-c13k{2-p/2}sP.

Finally since Ak = O(1/k) we conclude that

f
2  P

k(Z) _< C13(C14 k k{p-2/2}) (3.82)

Maximizing the right hand side of (3.82), we obtain the existence of a constant c15 such
that

fk(z) C14 (3.83)-0k2/p-2)"

Case 2. fo XA I z 12 dt < fo XY Iz 12 dt. By the same kind of analysis as Case 1, we
obtain that there exist a constant C1 6 such that

fk(z) c16 (3.84)
k{q-p+2/q-2}(

Putting together (3.83) and (3.84) we obtain (3.76).
The final step in the proof is to show that the sequence of solutions we have con-

verges to zero. We show that Zk -- 0 uniformly in C1(R, R2,n). This will finish the proof
because for I z j< r/3 the higher order terms H and H coincide. To begin since zk

solves (3.62) we see
k-Q(zk) + 2 (H,(zk, t),zk) dt=O0. (3.85)

Then, from the definition of fk, (3.85), and using (3.58) and (3.59) there is a constant
c17 such that

1 -1 k

>q(-2 - ) 0H (zk,t))dt (3.86)

_ cI j 10( zk I) 1 zk IP +R(1 - Vk(I Zk I)) 1 zk Iq dt.

Thus from (3.76) and (3.86) we see that

k
lim j b(I Zk )1 Z k I' +R(1 - 'I(I Zk I)) I Zk 1q dt = 0. (3.87)

Let us show next that I Zk 1jo is bounded, where I. j denotes the norm in Lee(R, R2 ,).

Let Ik be an interval contained in [0, k] such that for any t E Ik = [FYI, 72]

zk(t) > AI, and I zk(7)- M. (3.88)
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For those k such that no such an interval exists we have I Zk Io< M. For any k large
enough and such that Ik is not empty we have by (3.87) that [0, k] \ Ik . Since Zk

solves (3.62), for any t E Ik we have

z,(t)I 1 Zk(71l) I + I Zk(S) I dst' f
!5 M + I A(s) II Zk(S) I ds + fI (Zk,S) ds (3.89)

t Y

S+ C18 IZk (S) I±+HZzk,3)I ds

Using (3.60) and (3.89)

Szk(t) <M + C18 1 zk(s) Iq ds

k
< M + c 19  0(I zk 1) I Zk I +R( - 0(I Zk 1) 1 Zk Iq ds

Then from (3.87) it follows that I zk 1co is bounded. Since zk solves (3.62) we conclude
that I ik 1, is bounded. We finally prove that this together with (3.87) implies that
actually I z -* 0. Let 0 < s < r/3, and ink(s) denotes the measure of the set

it E (0, kll zk(t) 1> s), then from (3.86) we have

k

fk(zk) c17 j 0(j zk 1) 1 zk 11 +R(1 - 0(I Zk I)) 1 Zk 1q dt

c17Minj4i= {i( 1) 1 C 11 +R(1 - 0(1 1)) 1 I'q}mk(S) (3.90)

> C17 IS 1P Mk(s).

From (3.76) and (3.90) we see that ink(s) -+ 0 as k -+ cc. Let 0 < E < r/3, k E N and

t E R, then either
I zk(t) I<e (3.91)

or there is a E R so that

I zk(a) 1 e and It -a 1 Mk(E). (3.92)

Then, if K is such that I Zk < K, from (3.92)

~t
I Zk(t) I 1 zk() I + ZkI ds

E E + Kink(),
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from where limsupkoo I Zk 1,< f and since E is arbitrary we have I zk 100-+ 0, and
then since Zk solves (3.62) also Ik 1 j-+ 0 as k -- .0

Remark 3.4. If the linear system has one Floquet exponent of indefinite type, or it
has one Floquet exponent of positive type and one of negative type then the system

i = JA(t)z + Jft,(z, t)

admits subharmonics in case f satisfies (H4) or (H4-). This is not true in general for
system with only positive or only negative Floquet exponents as we will se in an example
in the next Section.

§3.3 Benci-Fortunato's condition and a counterexample.

In this section we will present a counterexample to show that hypothesis (H3) is
necessary. We also show that (H3'), the related hypothesis assumed in [2], is stronger
than ours. In the process we obtain a result on perturbation of definite matrices (positive
or negative).

Let us start with the counterexample. Let D be the negative block of dimension
4 x 4 given by

0 0 - -1 (3.93)
0 0 0 1
0 0 0

where v > 0; we note that D is a block of C3 type with a = -1. Consider the
Hamiltonian

IJ(z,t) = f(t)(z +z +z +z ) (3.94)

with f(t) > a > 0, a continuous 1-periodic function and z = (zl,z 2 ,z 3 ,z 4 ). Let us
assume {zk} is a sequence of solutions of the system

= Dz + JH.(z, t), (3.95)

z(O) = z(k) (3.96)

and zk -+ 0 uniformly in C'(R,R 2n) as k -o. We will show that zk =0, Vk> N
where N is a certain number in N. Since ft certainly satisfies (Hi), (H2), and (H4),
this example shows that (H3) is necessary.

Expressing equation (3.95) in component form yields:

il = -z + aft (3.97)

i2 = -Vz3 - -4 + O (3.98)

3z4
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i3 = vz 2 + zI - z- (3.99)

i4 = vz1 - - (3.100)
19Z2

Let z = Zk be a solution of (3.95) and (3.96). Multiplying (3.97) by Z3 and (3.99) by
z1, integrating between 0 and k, and using (3.96) we obtain

aH k (vzz 2 -a -zl)dt (3.101)

0 VZ z3-a3 Z3) "t=f V2Z i 'Z

Multiplying (3.98) by Z4, (3.100) by z2 , integrating between 0 and k and using (3.96)
we obtain

fk(z3Z + Z a - Z4)dt = (Vzlz2 -ffz 2 )dt. (3.102)

Subtracting (3.101) from (3.102)
afk 2 a aH k a afH
z4 z± z, dt -Z2 + -Z3 dt),

JO UZ4 'Z JO aZ2  aZ3

by (3.94) this implies

z 2 + z 2t <d I 4f(t)(z 4 ) + Z )at < c (z 2 + z ) dt

where c = 4 Supf(t). If z1 $ 0 or z4 -0 then there exist r E [0, k] so that

11z(-) +z4(-)I> -.

Since c is independent of k we obtain that zi - 0 and z 4 - 0 for k > N, where N is

such that Izk(t) 1 _ 1/VC Yk > N Vt E R. Since z1 and z 4 are zero, equations (3.97)
and (3.100) imply that also z2 and z3 are zero. Thus z k - 0 for all k > N.

Remark 3.5 In [2 a counterexample is given to show that (H3'), the hypothesis related
to (H3), is necessary. As we show later this condition is stronger than ours, so that the
same counterexample shows the necessity of (H3). However the counterexample given
here is finer because the linear term has all Floquet exponents on the imaginary axis.

Let us consider now a block D of the canonical form of a Hamiltonian matrix C.
Then we have the following result.

Lemma 3.6.
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If any Hamiltonian perturbation of D has at least one eigenvalue on the imaginary
axis, then D is of indefinite type.

Proof. Consider the eigenvalue problem

, = Dx + AJx, (3.103)

x(0) = x(k), (3.104)

Since D satisfies the hypothesis of Lemma 2.1 in [2], there is an N so that Vk > N,
(3.103) and (3.104) has a solution (xk,Ak) with

7 r 37r
k< Ak _ -k-. (3.105)

Let v - xk(0). Then by (3.104),

v = exp((D ± AkJ)k) v. (3.106)

The block D certainly can not be of C1 or C2 type since in this case the eigenvalue
corresponding to the block is outside the imaginary axis, a small perturbation of D will
have all its eigenvalues outside the imaginary axis too. Let us assume that D is of C3
type. Then we can write the matrix D as

D = -a3V - aW

If we choose a E [0,27r] so that exp(-ia) = exp(-ioflk), then from (3.106) and the
properties of V we have

v = exp(-aV - rkW + AkkJ)v. (3.107)

By Lemma A.4, taking the logarithm of the matrix in (3.107) gives

(-(a + mk)V - okW + AkkJ) v = 0 (3.108)

where mk E Z. Dividing (3.108) by k, we obtain that Ak is an eigenvalue of the problem

((-a- mk)V - aW + AkJ)V = 0. (3.109)

k

Now (3.109) has the form of the eigenvalue problem (2.2):

-(cV + aW)v + AJv = 0. (3.110)

As we mentioned in section §2, the eigenvalues of (3.110) are analytic near f = 0. Thus
they have the form

= A + AE+A2E2 +.... (3.111)

36



Noting that the matrix (eI + aV-1 W) has only large eigenvalues for e large, (3.109)
implies Ilk = {-a - mk}/k is bounded. Suppose that Pk is bounded away from zero.
Since cI + aV- 1 W is invertible Ve 0 0 , for E > co its eigenvalues will be bounded away
from zero contradicting (3.105). By repeating this argument for any subsequence of
{P.k} we can conclude that Ik -+ 0 as k -- 0. Then for some j, a subsequence of {Pk},
and k large enough

Ak = Aj(lk) (3.112)

If Al is the first nonzero coefficient in (3.111), then (3.105) implies

and then the block D can not be negative.
If we look at the proof of Lemma 2.1 in [2] we realize that there is an eigenvalue

Vk of (3.103) and (3.104) such that

37r 7r

k-k

Then we can repeat the argument given above to obtain that D is not positive. This
finishes the proof for a block of C3 type. For a block of C5 type we would proceed in
the same way. We would actually prove that this implies a contradiction because a C5
block is either positive or negative. 0

Remark 3.6 As a consequence if D is a positive (or negative) block then there are
arbitrarily small Hamiltonian perturbations of D not having any eigenvalue on the
imaginary axis. This is an interesting result we have proved in a very indirect way.

We now compare hypothesis (H3') of Benci and Fortunato with our hypothesis
(H3).

(H3') Every Hamiltonian perturbation of C has at least one eigenvalue on the
imaginary axis.

Proposition 3.2
If a Hamiltonian matrix C satisfies (H3') then C has at least one purely imaginary

eigenvalue that is not of positive type, and at least one that is not of negative type.

Proof. We prove it by contradiction. If C does not have eigenvalues on the imaginary
axis then clearly (H3') is false. Let assume now that all eigenvalues of C on the imaginary
axis are of positive type. Then by definition, all blocks of C either correspond to
eigenvalues outside the imaginary axis or they are positive. Lemma 3.6 applied to each
of the latter gives a perturbation that takes all eigenvalues outside the imaginary axis,
i.e. (H3') is false. We could do the same argument if all eigenvalues on the imaginary
axis are of negative type. 0

Remark 3.7. This proposition shows that our hypothesis (H3) is weaker than (H3').
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§4. REDUCTION TO THE CENTER MANIFOLD AND
PROOF OF THEOREM II.

In Section §3 we proved Theorem I which guarantees the existence of nontrivial
subharmonics converging to zero for the Hamiltonian system (HS), under hypotheses
(HO), (H1), (H2), (H3) and (H4).

In this section we will prove a similar theorem but we will impose the superquadratic
condition (H4) for ft only on the center manifold.

In order to obtain our result we will need some extra differentiability on the Ha-
miltonian H:

(H5) H is of class C 3 near z = 0.

Under hypotheses (HI), (H2) and (H5) we will reduce system (HS) to a Hamiltonian
system

tb = JB(t)w + JR,(w,t) (4.1)

on the center manifold.
We will replace (H4) by:

(H6) There are constants c > 0, r > 0, q + 2 > p > q > 2 such that

(f,,,(w,t),w) >_ qK(w,t) > C I W q  (4.2)

VWER 2m, Iwl-r, tER.

Here m is the dimension of the center manifold. A direct application of Theorem I leads
to

Theorem II.
If (H5), (H1), (H2), (H3) and (H6) hold, then there exists an integer N so that for

every k > N, there exists a nontrivial solution Zk of (HS) with period kT and {zk}__1
converges to zero as k --+ oo uniformly in CI(R, R2n).

The reduction to the center manifold allows us to prove the theorem under condition
(H6) that in principle is weaker than (H4).

As we will see later in this section the reduced Hamiltonian PL is not known ex-
plicitly, so that it is interesting to have a condition on the original Hamiltonian ft that
implies (H6). If we assume some hypothesis on the behaviour of the second derivatives
of H near 0 then we can prove that (H4) imply (H6). See Proposition 4.3. Actually we
only need to impose (H4) on the center manifold. We will be more precise about this
point in §4.4 where the adequate notation will be available.

§4.1. Reduction to a system with a constant linear term.

With hypotheses (H5), (HI) and (H2) we can write the Hamiltonian system (0.1)
as:

i = JA(t)z + JH-:_(z, t) (4.3)
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where I(z, t) = o(I z 12). System (4.3) is refered as (HS). We have the analog of Lemma
3.1. Using the same notation considered there, we have

Lemma 4.1.
There are matrices 0,, R and P(t) so that 0, is Hamiltonian, f?2 = I, and P(t) is

symplectic satisfying P(t + 1) = P(t)R?, for which we have:
z(t) is a k-periodic solution of

= JA(t)z + Jftz(z,t)

if and only if'(t) = P(t)-lz(t) is an Rk-periodic solution of

= C,+ ± JHi (,t) (4.4)

where
(, t)= H(P(t)z, t). (4.5)

Proof. Can take C, = Cr, R = R and P(t) = P(t) as in Lemma 3.1, and do the proof
similarly.*)

Remark 4.1. The new Hamiltonian is not periodic in general, but it satisfies

! 1 ( ,t + 1)= f/12(&, t) (4.6)

Vt E R, V E R2n. We will say that f 1 is B-periodic.

Remark 4.2. In Lemma 4.1 the matrices Cr, R and P are not unique, they can
be transformed by symplectic transformations. They can be chosen so to fit with the
setting of the Center Manifold Theorem presented in Appendix C.

By definition of C, and Ci we have a symplectic transformation Q so that

Q-'C,Q = S

and
Q-'CiQ =7

see (2.33) and before for the definition of S and I. The matrix S is a block matrix

0 Sq

where SP and Sq are Hamiltonian matrices. Let Qp and Qq be symplectic matrices
transforming 3'P and Sq to their corresponding canonical forms (See Theorem 1.1).

Then if

Q1= (Q 0
0 Qq
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and

Q2 = QQ1

the matrix
C, - Q 'CrQ 2  (4.7)

is the canonical form of Cr, and due to the block structure of S and I

7i = Q2 1 CQ 2. (4.8)

We define

T? = e ut! (4.9)

and
P(t) = Q2P(t)Q2. (4.10)

For the matrices C0, R and P(t) Lemma 4.1 holds. By the block structure of the
canonical form matrix, we can reorder 0 r so that

0~(% C2)

and
i 0

= 0 R 2 )'

with C1 having eigenvalues only on the imaginary axis, C2 having eigenvalues only
outside the imaginary axis, and

=( )1 0

Moreover C2 and R 2 have the block structure

C2 _ C21 0

0 C22

and

R = J22)

C21 has eigenvalues with positive real part, C22 has eigenvalues with negative real part
and the matrices R 21 and R 22 have the form

R 2 = (12i 0)
0 

n2
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for i = 2,3. The following commutativity property is consequence of the block structure
and the special form of R:

C21R21= R 2 1 C 21 , C2 2 R 2 2 = R 2 2 C 22 , and C1Rj = R1 C1 . (4.11)

Remark 4.1 holds with this new matrices.

Remark 4.3. In the canonical form we considered before we can take the 'off diagonal'
elements to be any number -y 0. See [4].

We can define symmetric matrices A, and A 2 so that

JAj=C j=1,2. (4.12)

Then, after the transformation we can write (4.3) as

i = J1 Aj~i + H 1l, (4, 2 ,t) (4.13)

2 = J2 A 2 C2 +H1/ 2/,( 1 ,C2 ,t). (4.14)

In Section §4.2 we drop the index 1 in H and the bar in R.

§4.2 Reduction of (4.13) and (4.14) to the center manifold.

We want to reduce (4.13) and (4.14) to the center manifold. Because this system
is not periodic but R-periodic we will need a special version of the Center Manifold
Theorem. In Appendix C we provide the changes necessary to modify the original
existence proof in order to suit our needs. Our basic references for this theorem are the
original paper by Kelley [9] and the book by Carr [5].

Theorem 4.2. (Center Manifold Theorem)
If H satisfies (H5) then there exists a C2 function

h: N x ) R 2 12

where N is a neighborhood of the origin in R 2 ', such that

h(R C1 ,t + 1) = R 2 h(Cj,t) (4.15)

h(0, t) = 0, h'(0,t) = 0 (4.16)

and the manifold
M = {(Ci, h(Ci, t), t)l C, E N, t E R}

is an invariant manifold for (4.13) and (4.14). M is called the center manifold.

Proof. See Appendix C.0
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System (4.13) and (4.14) can then be reduced to

=- J1 A, 1 + J1HfI ( ,, h( ,, t), t) (4.17)

or equivalently
j = JiHe,(i,h(i,t),t) (4.18)

where H is given by
1 1

H( 1,, 2 ,t) = -(A , 1 1 ) + 1(A 2 , + 2 )±+I( 1 , 2 ,t).
2 ' 2

System (4.18) is a Hamiltonian system if it is interpreted properly; namely we have to
consider in R2 1 a nonconstant symplectic form. In order to apply the results of Section
§3, particularly Theorem I, we need to transform (4.18) to put it as a Hamiltonian system
in R2,, with the standard symplectic form. Let us define the reduced Hamiltonian

H2(lt) = H( ,,h(l,t),t). (4.19)

Using (4.6), (4.11) and (4.15) we see that

H 2 ( ~t + 1) -(A,11, i) + 1(A2 h( 1 ,t + 1), h( 1,t + 1))
2 2
+ q ,h ,t + 1), t + 1)
1R 1 ) + (A 2 h(R 1  1,t), h(Ri ,t))

22
+ - ( h(Ri C1,t),1

=H(Ri,t).

in other words we have proved that

H 2(6,t + 1) = H 2 (R 1 i,t) Vt E R, 61 E N. (4.20)

The derivative of H 2 is given by

H2 (,(1 ,t) = g,(1, h(61,t), t) + (h'(61,t))rH,,(1, h(61 1),t) (4.21)

where ' denotes derivarive with respect to 61.
On the other hand, M being an invariant manifold, the right hand side of (4.13)

and (4.14) should be tangent to M, that is

J/ H (61, h(61 't) 't) N .A
J2 H,(1,h( ,)) = t),( tt) + h'( ,,t)A) (4.22)
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where • denotes derivative with respect to t, A E R 2 " and it E R. From (4.22) we obtain
that

J 2H , (1, h(( 1 , t), t) = h'(, t)J1 H4 (, h( 1 , t), t) + h( 1). (4.23)

Inserting (4.23) in (4.21) we obtain

H, (61, t) -= (I - h" J2 h'J 1 )IT4( ( 1,h( l,t),t) - h'rJ2 , (4.24)

and then system (4.18) can be written as

-(J + h'rJ2 h') l = H2 ((,t) + h'rJ2 h. (4.25)

This system is Hamiltonian if we consider R2 ' with the symplectic form given by
J, + h'rJ2 h'. We will perform another transformation so that (4.25) is a Hamiltonian
system in R 2 n t with the standard symplectic form.

Before doing so let us collect some properties of the terms involved in (4.25). Let
us define

wi( i,t) = h'"( l,t)J2 h'( 1,t) and (4.26)

W2(Cl, = h'"(Cl,t)J2 h( l,t). (4.27)

From (4.15) we see that
h( l,t + 1) = R 2 h(Rli ,t) (4.28)

and then
h'( ,t + 1) = R 2h'(RI1 ,t)Ri. (4.29)

Using the simple form of R 1 , (4.26), (4.27) and (4.29) we obtain

Wl(6l,t+ 1)= Rlwl(R 1 j,t)R1 and (4.30)

w2(61,t + 1) = Rlw2(Ri,,t). (4.31)

For notational convenience in the next section we will drop the index 1 from J1, 1, R,
and nj, and the index 2 from H2.

§4.3 Transformation of (4.25) via the Darboux Theorem.

In this section we will find a transformation that will change (4.25) into a Hamil-
tonian system with constant symplectic form. Before we go to the construction let us
assume we have

F:VxR - V'xR

g:V x R--* R

(Wt) a-1 g(Wt0,
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where F is a diffeomorphism of class C', g is a function of class C', and V and V' are
neighborhoods of the origin. Let us assume F and g satisfy:

(FO) F(w,t) = (G(w,t),t)

(Fl) G(O,t) = 0, G'(O,t) = 0, g(O,t) = 0 and g(O,t) = 0,
(F2) G(w, t + 1) = RG(Rw, t) and g(w, t + 1) = g(Rw, t),

(F3) GIr(w,t)(J +w,(F(w,t)))G'(w,t) = J and

G'(w, t)(J + w,(F(w, t)))G(w, t) + G"t (w, t)w2 (F(w, t)) = gw(w, t)
where here and in what follows ' and - denote derivatives with respect to w and t
respectively.

Lemma 4.2.
Let F and g as above. Then C(t) is an Rk-periodic solution of (4.25) if and only if

w(t), defined implicitly by

is an Rk-periodic solution of b = JH 3 w(w,t) (4.33)

where
H3(w,t) = H(F(w,t)) + g(w,t). (4.34)

Proof. Since (t) is Rk-periodic it satisfies C(t + k) = RkC(t). Then from (F2)

Rk (t) = G(w(t + k),t + k) = RkG(Rkw(t + k),t)

so that
C(t) = G(Rkw(t + k), t), (4.35)

and this implies w(t + k) = Rkw(t).
Let us assume now that (t) is a solution of (4.25). Then differentiating (4.32) and

multiplying by -(J + w,) we obtain

-(J + w1 ) = -(J + wl)G'(w, t)tb - (J + wl)G(w, t). (4.36)

From (4.34)
H 3w(w,t) = G'TH,(C,t) + gw(w,t). (4.37)

Multiplying (4.36) by G"', using (4.25) and (4.37) we obtain

-G'r(J + wl)G'ib = H 3 ,(w, t) + G'w 2 + GW'(J + w,1 )G - gw(w, t). (4.38)

From (F3) we see that (4.38) is exactly

-Jb = H 3w(W,t)
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completing the proof.*

Remark 4.4. From (4.20), (F2) and (4.34) we see that

H 3 (w,t + 1) = H 3(Rw,t), (4.39)

and from (Fl) we have H3 (0,t) = 0 and H3 ,(0,t) = 0.

It remains to prove the existence of the diffeomorphism F and the function g. This
is done via the Darboux Theorem. We present here an elementary proof of the Darboux
Theorem. For a proof using the language of differential forms see, for example, [1].

We will introduce an extra variable and find a function

.F:V x R x R -- V' x R x R
(w,t,u) 1-v F(w,t,u) =( , Y).

Taking appropriate projections of Y we will define F and g. We call z = (w, t, u) and
77 = 0,t).

Let us consider the matrices

J 0 0)

0= 0 0 0 and (4.40)
(0 -10

L"w , 0) w2( , 0) 0
(l =l -Wr( , 0) 0 0 (4.41)

0 0

If we supplement R with two extra entries

f? 0 1 0
001

then from (4.30) and (4.31) we have

1( , + 1, p) = Rf?(R, 0, p). (4.42)

Lemma 4.3.

"ij ankj + = 0, 1 < i,j, k < 2n + 2 (4.43)197k (977i 49,7i

Proof. By direct calculation.*

Remark 4.5 Lemma 4.3 says the the 2-form defined by Q is closed.
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Because 0 satisfies (4.43) we have the following lemma.

Lemma 4.4. (Poincare' Lemma)
There is a function a : N x R2  R2" +2 such that

ij = () (r 7)- (77) 1 < i,j 2n+2. (4.44)

Moreover the function a satisfies

a( , 9 + 1, ) = Ra( ,9, ). (4.45)

Proof. We define a by the following integrals

1 2n

a i Qik(r,09,0P)rkd' 1 < i < 2n and (4.46)
0k=1

2n

= IE fik(rC,,A)Ck dr, i = 2n + 1,2n + 2. (4.47)
}k=1

First let us assume 1 < i, < 2n. Then differentiating (4.46) we have

O~j (7) - j(", 9, P)r + E -ik(r O'U)r2 d (4.48)
Orb k=1

and Ice 2n
7i ( 77) = 2ji (r, , z)r + E " re -C, 9, pir 20 ' k dr. (4.49)

10 k=1 ac

Noting that fLij = -"ii, subtracting (4.49) from (4.48), and using (4.43) we obtain

2n
a(- j:+ alik - jk ) 2 d) = 11 2Li,,(7C, 9, p)r + ( 77" (T

a77i a77i fo =1 i7?j ~li(4.50)
f l 2 n 9P - ,r

k=1l r~

In this last expression we identify the integrand as

d Qij( r C, , 2  (4.51)
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so that

The case i = 2n + 1,j = 2n + 2 is trivial because ai = 0 , aci does not depend on u and
Rij = 0. The other cases are obtained in a similar way.

Condition (4.45) is easily obtained by using (4.42) and the definition of a.

Lemma 4.5. (Darboux Theorem)
There is a diffeomorphism -F: V x R2 V' x R2 such that

.TF(z)'7 (Q"lo + (.F(z))).F'(z) = Q0. (4.52)

Proof. The function Y will be defined by a differential equation. For s E R, let

9,(=) -Po + sQl(7). (4.53)

Then, since RO is invertible and Q(0, 0, p) = 0, there is e > 0 so that Q, (77) is invertible
for every 77 E B,(0) x R2 . Then we can define

X(7 7,s) = -l2-1(7)a(7), (4.54)

and consider the differential equation

d77
ds = X( 7, s) (4.55)

7(0) = z.

Since a(0, 9, p) = 0 V(9, p) E R 2, equation (4.55) with the initial condition

71(0) = (0,t,u)

has the solution
7(s) = (0,t,u) Vs E R.

Then, by the general theory of ordinary differential equations we can define

H: B,, (0) x R2 x [0, 2] -- R2n x R2

where 'H(z, s) is the solution of (4.55), and 0 < el < e. "R(z, 1) is a diffeomorphism of
class C1 , see [6]. We define F(z) - 1i(z, 1). Let us check that the function Y satisfies
(4.52). By definition we have

Q(7,s) = Qo + sQ(7)-
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Then we have the following derivatives:

j ('(z,),S) ij a (4.56)
i~zs a71 azk

9 ( t(z, ), ) = S a as + 9it. (4.57)
4as.. ___1 9

Here, and in what follows we will use Einstein's convention for sums. Let us consider
the differential equation (4.55) componentwise:

Q ij(H(z, s), s ) ds (z, s) = -ai('H(z, s))

and differentiate it with respect to Zk. Using (4.56) we obtain

Orbit -O (z,) d OT-kj a,i a9R (4.58)a71 aZk ds ds4 a?, aZ"

Our purpose is to show that

"(, )f( z,1) )'(z, 1) = Q0. (4.59)

Since we obviously have

H" (z, O)f2(H(z,O0),O0)H'(z,O0) = f o

it is enough to show that

d W" (z, s) Q(i(z, s), s)R'(z, s) = 0.
ds

We do this componentwise. Differentiating and using (4.57) and (4.58)

d (o,,- a-d-(0--(z,s)Q j (H(Zs), 1 --- (z,s))=

d a li )al- + (j d ai Ohi + ±Ha dfm T al

(f ak m as ad1 a azk +9-z

a771 azM 4zk a?1 49zk (9Z,,, a?1 O9zm -94 as
a0i aR M'H 'H j +SOQjHi 9' Hj o9M +~t a-Hj all
- , 43 5az7! mzr, as m azk
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Changing some of the indices in (4.60) and reordering the terms we obtain

-(Z I -(zS)Qij(H-(z, s), s) f"(z's) =

W- az" 49 (4.61)
aatj aati +J 'ij) M 'i 8Hj +( Rjjj + l Q_ j ) O7"i 9-H j o-7Hi  (.

( i 3 Zm OZk a)1 197j a 9Zm )Zk C8 "

Now (4.61) is zero by Lemmas 4.3 and 4.4.0

Now we are prepared to prove the existence of F and g.

Proposition 4.1
There is a diffeomorphism F and a function g satisfying (FO), (FI) ,(F2) and (F3).

Proof. Let us consider the diffeomorphism F defined in Lemma 4.5, and let us write
it as

Y(z) = (G(z),T(z), u + g(z)). (4.62)

We recall that z = (w, t, u). From (4.41), (4.46) and (4.47) we see that X is independent
of 772n+2 = p, hence G, T and g are functions of (w, t) only. From (4.41) and (4.47) we

see that a2n+2 = 0, and from the block structure of Q, we have that

(J + SW) - ' 0 s(J+sWI)-lW
S1 ( 0 0 -1 ) (4.63)

therefore Xmn+1(7, s) = 0, and this implies that

T(z) = t. (4.64)

From (4.42), (4.45) and (4.54) we see that

X( ,O + 1,t,s) = fX(R( ,9, 0t),s). (4.65)

The function -(Rw, t, u, s) satisfies equation (4.55) with the initial condition

1"H(Rw,t,u,0) = (Rw, t,u), (4.66)

according to the proof of Lemma 4.4. On the other hand, the function

"- ((w, t, u, s) = (RG(w, t + 1,s), t,u + g(w, t + 1, s),s) (4.67)

satisfies
"H. (w, t, u, 0) = (Rw, t, u), (4.68)
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and using (4.65)

-- (Wlt,us) = d(RG(w,t + 1,s),t + l,u+ g(w,t + 1,s))
d

= -TR'H-(w,t+ 1,u,s)
ds

= .X(G(w,t + 1,s),t + ,u+g(w,t + 1,s),s)

= X(RG(w, t + 1, s7 t, u + g(w, t + 1, 3)7 s)
= X('H. (w,t,u,s),S).

Then by the uniqueness of solutions of ordinary differential equations

l( Rw, t, u, 1) - .(w, t, u, 1)

and hence
G(Rw,t,u) = RG(w,t + 1,u) and (4.69)

g(Rw, t,u) =g(w,t + 1,u). (4.70)

Define F(w, t) = (G(w, t), t). Because F is the projection of .Y, and (4.64) holds together
with the fact given after (4.62), it follows that F is a diffeomorphism. It certainly satisfies
(FO). By (4.16) and the form of X, F and g satisfies (Fl). From (4.69) and (4.70) it
satisfies (F2). Lastly (F3) is a consequence of Lemma 4.5.*

§4.4 Analysis of Hypothesis (H6).

Our reduction process led us to the Hamiltonian system

w = JH 3 (w,t).

By Remark 4.4 we have that H3 satisfies (H1) then we can write this system as

tb = JAlw + Jf 3 .(w,t). (4.71)

with H3 = o(I w 12). A further transformation of (4.71) in order to take it into a periodic
system will give

tb = JB(t)w + JK-(w, t), (4.72)

and we can apply Theorem I to it if we assume (H6). See Section §4.5.
In this section we will study condition (H6) for H3 , and we will derive some sufficient

conditions for (H6) to hold in terms of the Hamiltonian Ht or rather H1 from Section
§4.1. For convenience we will use the notation of Section §4.1, and we will refer to Hi
as the original Hamiltonian. We assume
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(H7) There are constants c > 0, r > 0, q + 2 > p > q > 2 such that

(ft1 ,( ,,0,t),4 1 ) > qHj(61,0,t) > c I11 IP  (4.73)

and a condition on the cross derivatives

(H8) H1t, ,(6,0,t) = 0(16 1 IP- 2 ) and Hljtc(61,0,t) = O(1 j, IP-l) near
61 = 0.

Remark 4.6. Clearly (H4) implies (H7).

Remark 4.7. Due to the method we are using it seems necessary to have a condition
like (H8) in order to deduce (H7) from (H4).

Remark 4.8. Under hypothesis (H8) we see from the Center Manifold Theorem (Ap-
pendix C) that

h'(61,t)- O(j 1 IP- 2) and h(61,t) = O(J 1 IP-'). (4.74)

After integrating (4.74) and using that h(O, t) - 0 we also have

h(6 1 ,t) = 0(1 , IP1). (4.75)

The following lemma describes the behaviour of G and g near w = 0. Let us write G as
G(w,t) = w + G,(w,t) and consider /(p) = Min{2p- 4,p- 1}.

Lemma 4.6.
Under hypothesis (H8)

G (w,t) = O(f w (/3 (P) (4.76)

and

9g(w,t) = o(I w 1 P) (4.77)

Proof. By the same argument given in Proposition 4.1 we can show that H has the
form

%(w, t, u, s) = (d(w, t,s), t, u + (w, t, s)) (4.78)

where naturally G(w, t, 1) = G(w, t) and (w, t, 1) = g(w, t). To show the lemma it will
be necessary to analyze the vector field X given by (4.54). Let X 1 represents the first
2n components of X. Recalling that X does not depend on y, from (4.55) we see that
6 satisfies

-d =_ Xi(G,t,s), G(w,t,O) -- w. (4.79)
ds

If a denotes the first 2n components of a from (4.54) we have

X, ( ,,s) = -(J + swI)-6. (4.80)
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We have
_(j + sw1)- 1 = j + sjwIj + s2 (jw,)2 j + ... (4.81)

Then from the definition of w, and (4.74)

-(J + SW1)- = J + 0(1 1 j2p- 4 ). (4.82)

Differentiating (4.81) with respect to w and using (4.74) again

(-(j + SWI)-')' = 0(16 IP-2). (4.83)

On the other hand, from the definition of a in (4.46)

d= 0(1 12p-3) (4.84)

and differentiating a with respect to

' = 0(16 16(P)) (4.85)

Then from (4.80), (4.82)-(4.85)

X= 0(1 12p-3) (4.86)

and
X,= 0(a 6 1(P)). (4.87)

Differentiating (4.79) we find that G' satisfies the differential equation

d XG' and G'(w, t, 0) - I. (4.88)
ds

Then, integrating (4.88) and using (4.87) we have

1 -1 0 1

I G'(w,t) - II_<1 X'G'ds 15 c I I - cj I G(w,t,s) 1P(P) ds. (4.89)

By (4.87) we see that X'(O,t,s) - 0, then noting that G(0,t,s) 0 we find that
G'(0, t, s) = I, from where

d(w, t,s) = w + o(I w j). (4.90)

Thus from (4.89) and (4.90)

I G'(w,t)- 11< c2 Iw 10 ( p )  (4.91)
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To show (4.77) we consider the 2n + 2 component of (4.55), then we have that satisfies

djg(w,t,s) = X 2n+ 2(G(w,t,s),t,s). (4.92)

But from the definition of X and Q2

X2.+2 -- (-sw'(J + swl)-l, 1,0O)a. (4.93)

Here W2 = hlrJh so that

W2 = 0(1 12p-3). (4.94)

Since h'(O,t) = 0 we have h'( ,t) = o(1) then, using (4.74)

W2= o(I P2). (4.95)

Now, using the definition of a, for the 2n + 1 component we have

2 o(j l - ) (4.96)

and then, using (4.81)-(4.85), (4.95) and (4.96), from (4.93) we find that

X ,+ 2 = o( W IP-1). (4.97)

Differentiating (4.92), and doing an analysis similar to the one above we obtain

g.(w,t) = o(I w I'-1 0

Proposition 4.2.
If ft, satisfies (H5),(H1), (H2), (H7) and (H8) then there are constants f > 0, q >

2, a>0 so that q+2>p>q>2 and

f. (W,t),W) 0f 3 (W,t) I W Iw

VwER 2" , IwI! _ f, VtER.

Proof. Let us consider the following functions
1

a(w, t) = (A, w, G, (w, t)) + -(AI G1 (w, t), G1 (w, t)), (4.98)
2

1

b(w, t) = (A 2 h(G(w, t), t), h(G(w, t), t)), (4.99)

c(w, t) = HI(G(w, t), h(G(w, t), t), t), (4.100)

53



Then
H 3 (w, t) = a(w, t) + b(w, t) + c(w, t) + g(w, t).

We analyze each term separately. Differentiating (4.98) and taking the inner product
with w yields

(a'(w,t),w) = (Aiw,Gx(w,t)) +(Alw,G (w,t)w) +(A 1 G1 (w,t),G'(w,t)w). (4.101)

From Lemma 4.6 we have

(a'(w,t),w) = 0(1 w 1,i(p)+2) + 0( w 1
2 13(1)+2 ). (4.102)

By the definition of Pi(p), and noting that p > 2

P(p) + 2 = Min{2p- 2,p + 1} p + 6

where 6 = p - 2. Also 20(p) + 2 > p + 6, so that

(a'(w,t), w) = o( w 1P+ 6 ). (4.103)

Differentiating (4.99) and taking the inner product with w we obtain

(b'(w, t), w) = (A 2 h(G(w, t), t), G' h'(G(w, t), t)w).

Then from Lemma 4.6
(b'(wt),w) = 0(1 w IP+6 ). (4.104)

Finally let's analyze the function c. Differentiating (4.100), and taking the inner product
with w

(c'(w, t), w) = ( Gt1, 1 (G(w, t), h(G(w, t), t), t), G'(w, t)w) (4.105)

+ (H 2 (G(w, t), h(G(w, t), t), t), h'(G(w, t), t)G'(w, t)w)

By Taylor's theorem and Lemma 4.6 and using that k 1 ZZ(z, t) = o(1) we have

fIx (G(w, t), h(G(,,, t), ), t) = H , (w, 0, t) + o( w 1 -). (4.106)

In a similar fashion we obtain

(U 42 (G(w, t), h(G(w, t), t), t), h'(G(w, t), t)G'(w, t)v) = o( jr). (4.107)

From (4.106), (4.107) and (4.104)

(c'(W, t), w) = (H,1 , (U), 0, t), U)) + o(1 i,, j'). (4.10s)
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From (4.77), (4.103), (4.104) and (4.108) we obtain

(fH3 ,(w, t), w) = (01 C (w, 0, t), w) + o(I w P). (4.109)

By analyzing a, b, c and g in the same way we also obtain

ft(w,0,t) = fH3 (w,t) + o(I w 1'). (4.110)

From (H7), and (4.109) we have

(H 3 .(w,t), w) _ qH1 (w, 0,t) + o(I w 1'), (4.111)

thus by (4.110), (4.111) and (H7) there is e > 0 so that for r, > 0 small enough

(H 3 .s(w,t), w) > (q - E)H 3 (w,t), (4.112)

Vw e R2 ,j w l:5r,, VtER.

The constant e > 0 can be chosen so that q = q - E satisfies q + 2 > p > > 2. On the
other hand from (H7) and (4.110)

H 3 (w,t) = Hi(w,0,t) + o(I w P) > c I w I +o(I w N

so that there is a constant r2 > 0 so that for a constant E and ) w ):5 r 2

(q - C)ft3 (w,t) > e I W Iw

by setting f = Min{ri, r 2 } we complete the proof.*

Remark 4.9 As we said before, all the results we have proved in this section can be
obtained if we assume that k satisfies an adequate hypothesis. We preferred to impose
the conditions on H1 instead,for simplicity.

§4.5 Proof of theorem II.

This is a direct application of Theorem I noting that by Remark 4.4 H 3 satisfies
(Hi). We only want to mention that in the case the system has -1 as a Floquet
exponent, the reduced system (4.33), or system (4.71) obtained from (4.33) by applying
Proposition 4.2:

w = JAlw + JH-3.(w,t)

is R-periodic. A change of variables we perform now allows us to obtain (4.72) to which
theorem I is applicable.

Lemma 4.7.
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There is a symplectic matrix function R(t) so that w(t) is an Rk-periodic solution

of
tb = JAI w + JfI3 ,,(w,t)

if and only if z(t) = R(t)w(t) is a k-periodic solution of

= JB(t)z + jk,(z,t)

with the matrix B(t) defined by B(t) = -JR(t)R-(t) + R-r(t)A1 R-l(t) symmetric

and the higher order term given by K(z, t) H f- 3 (R(t)-1z, t).

Proof. The proof corresponds to the nonlinear reduced version of Lemma 3.2. The

matrix R we are using here corresponds to the block R1 we defined in Section 4.1. We

can define R(t) in the same way as we did in Lemma 3.2. The proof follows directly.*
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APPENDIX A. LOGARITHM OF A MATRIX.

This appendix is devoted to the definition of the logarithm of a real matrix. We
collect here some elementary properties of the logarithm, as they are used in the text.
We will define the logarithm of a matrix using the Cauchy formula for the logarithm
in the complex plane. We will follow the presentation of Yakubovich and Starzhinskii
[16], and we refer to this book for the proofs we omit.

Let X be an n x n matrix with coefficients in C. Let A,, A2 , ..., Ak be the different
eigenvalues of X (without counting multiplicity). We assume that X is nonsingular, so
that all eigenvalues are different from zero. Let I be a ray in the complex plane going
from the origin to infinity, not containing any of the eigenvalues A,, A2 , ..., Ak, and not
containing 1. In C \ I we can define a single valued branch of the logarithm in the usual
way

logz = log Iz I +iargz (A.1)

where arg z is the branch of the argument function satisfying arg 1 = 0.
Let 1" be circles, centered at the points Aj, j = 1,2, ...k, which are mutually disjoint

and do not intersect 1. Let Gj denote the open disk with boundary F,. If G = Uk- 1 Gj

then log z is well defined and analytic in an open set containing c0.
Using the Cauchy formula we now define a logarithm function for the matrix X by

k

logX 1 E (zI X)- logzdz. (A.2)2ri j=1frj

Lemma A.1.
(i) If K = log X then X = exp K.
(ii) If Q is a nonsingular matrix then

log(Q -1 XQ) = Q-1 (log X)Q.

Proof. For (i) see [16], page 55. (ii) is direct from the definition.*

Remark A.1. A more general notion of logarithm can be defined if in each Gj a
different branch of the complex logarithm is considered. If mj C Z, then define

log(z).. = log z + 27rimj (A.3)

then we define

log(X),f = (zl - X)-' log(z)mj dz, (A.4)
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where rTi = (Ml,m2,...,mk). This logarithm of X also satisfies Lemma A.1. For our
purposes it will be enough to take mi = 0,j = 1, 2,..., k. See [16].

Remark A.2. If the matrix X is real, one would like log X to be real. This is not
always possible, however the following lemma tell us when it is so.

Lemma A.2.
If X is a real matrix with no eigenvalues on the negative real axis then log X is a

real matrix.

Proof. See [161, page 56.0

When the matrix X is a symplectic real matrix, i.e.

X1 JX = J

then the logarithm of X satisfies a special property:

Lemma A.3.
f X is a symplectic matrix then

(log X)*J = -JlogX. (A.5)

Proof. See [16], page 211.0

Remark A.3. In (A.5) we have used * for conjugate transpose instead of r because in
general, as we said before, the matrix log X is not real.

The block property for the logarithm of a matrix is obvious, but we make it explicit.
Let the matrix X have the following block form

= 0 X2)

where Xi is an ni x ni matrix, i = 1, 2. Let us further assume that the eigenvalues of
X, are different from the eigenvalues of X 2 , then we obtain directly from the definition
that

logX= KlgX log0X2 (A.6)

Here we understand the logarithm of the blocks defined as in (A.2) but restrict the sum
to the eigenvalues in the corresponding block.

Lemma A.4.
If X is as before and both log(-X) and log(X) are well delined then

log(-X) = i7rl,, + log X
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Proof. For every z E C such that z and -z do not belong to I we have

log(-z) = iir + log z.

Changing the variable z to -z in the integral (A.2), the result follows.*

Finally we have a lemma concerning the relation between the eigenvalues of a matrix
and its logarithm.

Lemma A.5.
Let A be a real matrix. If exp A has one eigenvalue equal to 1 then 3m E Z so that

A - 2mV has zero as an eigenvalue. Here the matrix V is defined by

(oK
and the matrix K is defined by

0 ... 1 0

1 (.*.. 0 0

Proof. Let J be the Jordan canonical form of A, i.e. for some nonsingular matrix Q

QJQ-' A.

Since expA has I as an eigenvalue 3v E R',v 7 0 such that

expAv = v

and then
exp(pA)v = v, Vp E Z.

Using the Jordan canonical form we obtain, by taking w = Q-v

exp(pJ7)w = w Vp E Z,

and by blocks
exp(PJj)wj = wj Vp E Z, j = 1, 2,..., k.

Since v 5 0, for at least one index the vector wj is not zero. Considering this index,
but droping it from the formulae we have

exp(pJT)w = w Vp E Z, (A.6)
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with 3 = A + U and U is a upper diagonal matrix. Actually the matrix U has the
form

o, 0 ... 0

U 0_ U 2 ...

0 0 ... Uk

where

01 0 ... 0)

If A = a + ifl, then (A.6) can be written as

ea t, exp(ipflI + pU)w = w

Since this has to be true Vp E Z, and w : 0, we conclude that a = 0. Consequently A
is purely imaginary.

Using the block structure of U we have that for some Uj, the corresponding vector
wj 5 0 and

eiOPexp(pUj)wj = wj, VpE Z (A.7)

For simplicity, let us drop the index j in (A.7). We can calculate exp(pU) explicitly

2

1 p 2! n!.
n-1

0 1 p ... -

exp(pU)

0 0 0 ... p
0 0 0 ... 1

Thus

exp(pU)w - (w1 + pw2 + -... + - n .,W)
n!

All components of exp(pU)w have to be bounded, in particular the first one, and this is

possible only if w2 = w ... w = 0, consequently w = (wI, 0, ..., 0), and then (A.7)
implies

e iv # = Vp E Z,

in particular e' - 1, thus fi = 27rm, for some m E Z.
We conclude that A has an eigenvalue A = 27rim, for m E Z.
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If m = 0, then certainly A - 2irmV has zero as an eigenvalue. If m 0 0, since A is
real, A = -2rim is also an eigenvalue of A. Then the conclusion follows since the real
representation of the pair (A, A) is the matrix

(0 -27rm)
27rm 0 '

then A - 2irmV has zero as an eigenvalue. The multiplicity of 0 is in this case at least
2.0>

APPENDIX B. BRIEF PERTURBATION THEORY
FOR SYMMETRIC MATRICES.

In this appendix we collect some basic facts about the perturbation theory for
eigenvalue problems for symmetric matrices and we give a proof of Propositions 2.1, 2.2
and 2.3.

The subject of perturbation of eigenvalue problems is well known, and we refer the
reader to the book by Kato [8] for more information. Also the book by Rellich [14] is
worth mentioning.

After enunciating the basic theorem, we describe the calculations necessary to ob-
tain the power series for the eigenvalues of the perturbed problem. We then specialize
the results to perturbation linear in e and then apply these results to our situation.

Suppose we have a power series

A(E) = A0 + eAl + e2A 2 + ... (B.1)

which converges for small e, where the Ai are n x n symmetric matrices. We consider
the eigenvalue problem

A(E)v = Av. (B.2)

Theorem B.1.
Suppose A is an eigenvalue for the matrix A(O) = Ao of multiplicity k > 1, and

suppose that the interval (A - a, A + #3) contains no eigenvalues of Ao other than A,
where a, 8 are positive real numbeis.

Then there exist convergent power series
=\~) +' ) + ..., =+ 1),2,..., k (B.3) =

and
vi(f) = v °) + V 1)6+ v V )6 +.. = 2,..., k (B.4)

where A~E R, vi ) E R, , such that

A(e)vi(f) = Ai(e)vi(E) i= 1,2,...,k (B.5)
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and (vi(e),vj(c)) = 6,i i,j = 1,2,...,k. (B.6)

For 0 < a' < a and 0 <,8' < P, there is S > 0 such that in the interval (A - a',A + fl'),
Ai(E) are the only eigenvalues of A(e) for I e 1< S.

For a direct proof of this theorem see [14]. See also [8].

Our aim now is to give a formula to compute the coefficients A j ) of the power series
(B.3). Given a symmetric matrix A, we can consider its spectral decomposition

A = ZAiPi (B.7)
i=1

where {A1, A2 , ... , Am} = a(A) is the spectrum of A and Pi is the matrix of orthogonal
projection onto the eigenspace associated to Ai.

The resolvent of the matrix A is defined for every E C \ a(A) by

R( ) = (A - I)- 1  (B.8)

We can obtain a power series expansion about an eigenvalue, say A1 , using (B.7): for
large E C

(A - I)= 0 (A)ij=

=1 i=1 ) •(B.9)

m 10

i~l Ai Pi,

where we used the facts that the series is absolutely convergent and that the projections
are orthogonal. We observe that (B.9) makes sense for every a(A).

Reordering terms, for close to A,, we have
1 1 - l~ ). 1

P -E Ai A1 [ =( 1 (Ai 1) A1) P
i=22 i= Pil( , 10

j=O i=2 - A1

Then we can write, from (B.9) and (B.10)
1IJo A)is j + l

R( A- P,1 P + "( A) (B.11)
j=O
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where the matrix S is called the reduced resolvent and it is given by

s =E
i=2

From (B.11) we obtain that

2j R(6)d6 =P 1, (B.12)

where 17 is a small circle around A,. Considering the matrix valued function, A(e), we
can define the resolvent

R(6, e) = (A(e) - 6I)- l.  (B.13)

If A is an eigenvalue of A(O) of multiplicity k, then by the perturbation theorem,
for small e in an open interval about A the only eigenvalues of A(E) are Ai(e), ... ,

If we denote by P(e) the projection onto the eigenspace associated to Ai(e), ...,Ak(E)

then using essentially the argument given above, we can prove that

1 jR( , e) d = P(e) (B.14)
2ri I

where F is a small circle containing AI(E), ... , Ak(E). Noting that

(A(E) - AI)R( , e)= I + ( - )R( , e),

from (B.14) we obtain that

(A(e) - AI)P(e) =( - A)R( , e) d. (B.15)

On the other hand, if B(c) = E', Aiei,

R(, c) = (Ao + B(e) -

= (Ao - 6I)-'(I + B(e)(Ao -

= R( , O)(I + B(c)R( , 0)) - '.

Then, a power series expansion leads to

R() Z(-B(f)R())P. (B.16)
p=O
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Finally, from (B.15) and (B.16)

00

(A(-E) - AI)P(E) 1)P+1i (- A)R()(B(A)R())P d . (B.17)

Knowing the power series B(e) allows to obtain a power series

00

(A() - A)P(e) = e PAp (B.18)
p=1

where the first integral, for p = 0, vanishes by (B.15). Dividing (B.18) by e we obtain

A 6 1 00
= (A(e) - A)P(e) = EZJAp ,+. (B. 19)

p=O

The matrix series A(1)(E) is symmetric and for every eigenvalue A 1) of A1 we can use
the perturbation theorem to obtain a power series of eigenvalues of A()(E). Thus the
coefficients A'), 1 < i < k, in (B.3) correspond to the eigenvalues of A1 .

This process called Reduction Process can be continued to obtain the higher order
coefficients of (B.3). The matrix A()(e) given in (B.19) is a perturbation of A, =
A(1)(0); thus for each of the eigenvalues A(') of A we can apply the Reduction Process
to obtain the coefficients A 2 ) . By applying it several times we can obtain any coefficient
in (B.3).

So far we have described the general perturbation problem. We now specialize to
linear perturbations in e. In particular we are interested in obtaining a formula for AP
in the case all Ai are zero for i < p. This will give a formula for the first nonzero
coefficient in (B.3).

If A() = A0 + cA1 then B(c) = EA1 and formula (B.17) greatly simplifies:

AP= (-1)P+ 1i J R()(AR())Pd, (B.20)

where we assumed, for simplicity that A = 0. The resolvent (B.11) is given by

R( ) = P + m()'S' (B.21)
j=0

If we rewrite R( ) as

R( ) = j kjR(J) (B.22)
j=-1
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with the obvious identification with (B.21) to define the matrices R (j ) , then we see that
given p

Ap= E (-1)P+lR( o)AiR( ")AI...AIR("P), (B.23)

where fp = {v = (vo,v,...,vp)/ vi _ -1, E=0 vi = -2}. Thus for example,

A 1 =PA1 P, and

A 2 -" -PA 1 PA 1 S - PA 1 SA 1 P - SA 1 PA 1 P.

Formula (B.23) gives the matrix . in terms of P, S and A1 , for any positive integer p.
We are interested only in the first nonzero matrix 4, and in this situation the formula
is even simpler.

Lemma B.1
If Aq =0 for all <q <p then

Ap+i = (-1)P+2PAI(SA1 )PP (B.24)

Proof. Our proof is based on the following simple combinatorial fact whose proof we
present later:

for q E N, if v E Qq and v 54 (-1,0,...,0,-1) then there is j such that 0 < j < q
for which --=0 vi = -2 or 0.

We prove the lemma using an induction argument on p. If p = 1, then A 1 = 0
implies A 2 = -PAISA 1 P as we can easily see from the formulae given above. Now
assume that the result of the lemma is true for every r such that 1 < r < p - 1, and
let us assume that Ap = 0 for all 1 < q : p. Let v E £Qp+i and let us assume that
v 0 (-1,0,...,0,-1). Then from our claim, there is 0 < j < p such that

Q(v) = R(Zi)A1R(i) . . .AIR(p+)

= (R(&'O)A1R(')...AiR("j))Ai(R(vj+)...AIR(P+I))

where i) 7 i = -2 or ii) EP+ v -2. Case i) We have two possibilities, a)
(UoI...,IVA= (-1,0,...,0,-1) or b) (VO,...,Vj) = (-1,0,...,0,-1). If a) by induction
hypothesis R(vo)A 1 ... R('j) - Aj. Consequently, from our assumption, (B.24) shows

Aj = 0 and hence Q(v) = 0. If b) then for v1 = (vo, ... , vj) E Qj and Q(v 1 ) =
R(vo)AR((L")...AR(vJi) we can iterate the argument. We note that j < p + 1. Case ii)
We proceed as in Case ii). After a finite number of steps we will find Q(v) = 0. Formula
(B.23) finally finishes the proof.

Now we prove the claim we made at the beginning. We have three cases: v0 = -1,
v0 = 0 or v0 > 0. Case 1. If vo = -1 then either v =. =V(q-1) = 0 which is not
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allowed, or there is k < q- 1such that v =...=k-1 =0 andVk 0. If Vk=-1
we can take j = k. If 'k = 1 then again we can take j = k. The remaining situation
corresponds to F]i=0 Vi > 0. Now, since Z?= 0 vi = -2 and vi > -1, there will be j < q
such thatZ F= ( vi = 0. Case 2. If vo = 0 then j =0. Case 3. If v0 > 0 then Ek 0 Vi > 0
for k = 0, and we proceed as we did in Case 1. >

In what follows we apply the perturbation theory as presented above to prove
Propositions 2.1, 2.2.

Proof of Proposition 2.1. First we identify the terms according to the notation used
in the Appendix.

Let
T = aWJ and T ( ' ) = VJ. (B.25)

Then (2.3) can be written as

(T + eT(1))w + Aw = 0. (B.26)

We apply the reduction process to (B.26).
We first compute the matrix

(1) - PT(1)P (B.27)

where P is the projection matrix onto the eigenspace associated to the eigenvalue 0 of
T. Displaying the actual form of T we see that the eigenspace associated to zero is span
{ei,e 2t} so that P takes the simple form

P = diag(1, 0,..., 0, 1). (B.28)

From the definitions given in (1.9), (1.19) and (B.25) we have

T(1)= K 0)7 (B.29)

and then the coefficients
T )  1() = 0. (B.30)11- 2121

From (B.28) and (B.30) we see then that

-() = PT(')P = 0. (B.31)

This indicates, according to the reduction process, that A = 0, j=1,2, in (2.5).

The next step in the reduction process requires the introduction of the reduced
resolvent of T

S=* -j(B.32)

j 6o
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where Xj is an eigenvalue of T and Pj is the projection matrix onto the eigenspace
associated with the eigenvalue Aj.

In order to compute S we first obtain the nonzero eigenvalues of T. After a calcu-
lation one obtains that

det(T - AI) - f A2(A - ,)2(A2 - 1)12 if I even (B.33)
A 2 (A2 - 1)' - 1  if I odd.

The eigenvalues of T different from zero are a and-o. Since a takes the values 1 or -1,
from (B.32) and the spectral decomposition of T we see that

S = T. (B.34)

For a given p E N we compute (ST(l))P - ', from (B.25) and (B.34)

(ST-)) P- 1 = aP-1 (WJVJ)P-1 (B.35)

From the definition of V and TV given in (1.19) we have

WJVJ = d 0 (B.36)

so that, from (B.35) and (B.36)

-1 1 (dP-1 0 _1) (B.37)(ST())P ' = P-' 0 (d") P - "

Then, from (B.29) and (B.37) we obtain

T(1)(ST(1))P-1 = aP-1 0d- 0~"p- (B.38)

If p < 1 then, using Lemma B.1 and (B.38)

T(P) = (-1)P+IPT(1)(ST(1))P-1P = 0, (B.39)

and if p = I then, using Lemma B.1 and (B.38) again

t()- (-1)('+')PT(1)(ST(1))-' p

S(-1)'+'a'-'diag(1, 0, ... , 0, 1).

Thus, the first nonzero coefficients in (2.5) are the nonzero eigenvalues of _T( 1 so
that

= (-1)'a -6, j = 1,2. (B.41)
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This finishes the proof.*

Proof of Proposition 2.2. In this case

T= (Or -d and T(' ) - -iJ. (B.42)

T has A = 0 as an eigenvalue of double multiplicity, with eigenvectors el and e2t.
The projection matrix is given by P =diag(1, 0, ..., 0, 1), and as before

t(-) = PT")P = 0.

We compute the reduced resolvent S. A calculation gives

det(T - Al) = A2 (A2 - 1)1- 1, (B.43)

thus the eigenvalues of T are A = 0, A = 1 and A = -1, both 1 and -1 of multiplicity
1 -1.

From (B.32), and the spectral decomposition of T we see that

S =T. (B.44)

From (B.42) and (B.44) we get

ST(1)=i(-d o) (B45)0 dr B.5

Then, for p E N

(ST(1))P-1 = iP-1 ((-1)P-dP-1 (dr)p) (B.46)

and from (B.42)

T(1),(ST(,)) p- 1 _ p 0(l
p p I 

(dr)
P - I

1 (B.47

Thus if p < 1,
T(P) = (-1)P+iPT()(ST('))P- iP = 0, (B.4S)

and if p = I
t(') = (-_l)P+'(i)tAdiag((_l1)t, 0, ... , 0, 1). (B.49)

Now, recalling that in this case I is odd,

= ±iA,:t g(-1, 0,..., 0,1),
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whose nonzero eigenvalues are 1 and -1, giving

S= 1 and 2 0 = -1.

from which (2.10) follows.

APPENDIX C. THE CENTER MANIFOLD THEOREM.

In this appendix we provide the modifications necessary to be made to the standard
Center Manifold Theorem in order to suit our needs.

We consider the following system of ordinary differential equations

9=1

= Ax + (O, x, y, z)

= By + Y(0, x,y, z)

i = Cz + 2(0, x, y, z)

here x, V and z are vectors in Rf(a), for n(x), n(y) and n(z) their corresponding dimen-
sions.

For system (C.1) we look for a locally invariant manifold parametrized by the
variable y, such a manifold is known as the center manifold. For more details we refer
the reader to [5] and [9].

We make the following assumptions:

(hl) A, B, C are constant matrices in real canonical form. A has eigenvalues with
negative real part, B has eigenvalues with zero real part and C has eigenvalues with
positive real part,

(h2) X, Y, Z are vector valued functions of class C 2 in a neighborhood

N 6 {(9, ,y,z)/ I X 12 + IY 12 + I z 12< b2},

(h3) X, Y, Z and their derivatives with respect to 9, x, y and z are all zero for
arbitrary values of 9 when (x,y, z) = 0.

(h4) For matrices Rx, Ry and R, of the form

with I1, and I2,, identity matrices of given dimensions, and a = x, y, z, we have the
following identities

X(8 + 1, x,y,z) - RX(o,R x,Ry,nRz)

Y(O + 1,x,y,z) = RyY(O,Rx,Ryy, R.z)

Z(0 + 1, x, y, z) = Rz2(O, R. x, Ryy, R.z)
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and RA = AR,, RYB = BRY and RC = CRz,

(h5) For some constants c > 0, p > 0 and 6j > 0

(0 c yIP (0,0, y, 0) C Ivy IP+l'

.b-(,o,y,o)< lyl", -a-(9 ,,,o)_<elC, ,

for every y so that I y I1 i.

Remark C.1 We note that (h4) implies that the functions k, k and 2 are 2-periodic
in 8. Then we can apply the Center Manifold Theorem to system (C.1). We want to
use (h4) and (h5) to obtain extra properties for the center manifold.

Theorem C.1
For system (C.1) there is a center manifold given by

M = {(0,x,y,z)/0 arbitrary, I Y 1< 62, X = u(O, y), z = v(9 ,y)}

where the functions u and v are delined and of class C2 in a neighborhood

Nb2 ={1(0, Y)/IY I< b2}

and they satisfy
u(0,R y) = R(0, y) (C.2)
v(o,, y) = R,,(0,y)

And for some constants K and 63

I (O,y) I < K Iy I", I (9 , y) 1< K y Y ,

o _(, )Ov Ov ~

for all I Y I< 63.

Proof. This theorem is proved by using the contraction principle in an adequate Banach
space. See [9]. We start describing a change of variables designed to deal with the local
nature of the problem. Let O(r) be a smooth real valued function so that O(r) 1- I if
0 < r < 1/2, and O(r) - 0 if 1 < r < oo. For large R and for A in R we define

X(Ox,y,z,A) = 0(I x 12 + I y I' + I z I2 +1A 2),- 1 (O,AX, Ay,Az)

y(, x, Y, ZA) = 0(1 x 12 + I y I + I z I2 +RA2),-lk(, ,Ax,A,"Az).

Z(OX,y,z,\) = 0( x 1 + I 12 + I Z 12 +RA 2)A'2(0, Ax,Ay,Az)
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With this change of variables system (C.1) is transformed into

6=1

i= Ax + X(O, x,y, z, A) (C.4)

= By + Y(O,x,y,z,A)

= Cz + Z(O, x,y, z, A)

and the functions X, Y and Z satisfy the following properties:
(h2)x X, Y and Z are defined and continuous, and for each A fixed they are of

class C 2 in (,x,y,z),

(h3).x X, Y, Z and their derivatives with respect to 0, x, y and z are all zero for
arbitrary values of 0 when (x,y,z) 0 0. And D~p  Z)(X,YZ) -+ 0 uniformly in

(O,x,y,z) as A --, 0 for 0 <1 p j< 2,

(h4)AX
X( + 1, x,y, z) = R.X(9, R.x, Ryy, Rz),

Y(0 + 1,x,y,z) = RyY(O,Rx,Ryy,Rz),

Z(O +1,x,y,z) = RZ(e,Rx,Rny,Rnz),

(h5)\ For some constants c> 0, p> 0 and 5b > 0 and for A < 1

9X ax-jy-(0,0, y,0, A) _:!5c Iyl', -0-(0,0, y, 0, A _)_cIyI +',

az(0,oy,oA) < c I IP, -- (0,0,y, 0,A) c l y 1P+1

iOy - -

for every y so that I y I< 61.
We define the following space of functions

'.1 = {(u(, y), v(O,y))/u and v satisfy(fl) - (f4)}

(fl) u and v are of class C' for all 0 and y,
(f2) u and v have period 2 in 0,
(f3) u(8,0), v(0,0), ,0, 0) I__(, 0) are all zero,

(f4)

II (u,v) max sup I Dtey)(u,v) j< oo.o<pl_<] (0,Y)

'Hi provided with the norm given in (f4) is a Banach space. For (u, v) E R1 and for
00, yo we define 0(t, o, yo, A) and 77(t, 00, yo, A) as the unique solution of the differential
equation

6=1
(C.5)

= y + Y(9, u(9, y), y, v(O, y), A)
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and for which 0(0, go,yo,A) = Oo and 17(0, 0o,yo,A) = yo. Obviously the function 4 is
given simply by 0(t) = o0 + t. We define now our operator T in 7-1 The u-component
of T is given by the formula

0
TU(u, v)(Oo,yo)= J AUX((o), u(Yo(o, 7(0)), 7(0), v((u), i(o)), A) d (C.6)

and similarly the v-component is defined by

T.(u, v)(Oo, yo) = J e-CZ(k(a), u((o), 7(a)), z7(0), v(O(o,), 77(a)), A) do, (C.7)

In [9_it is shown that for A small enough the operator T is a contraction in the unit
ball 7- of "V'. We will consider the following closed subset of 7-t:

'(K) = {(u,v) E7i/ (u,v) satisfies (C.2) and (C.3)}

In what follows we show that for a certain constant K the operator T is a contraction in
)'(K). We first show that if (u,v) satisfies (C.2) then (T,(u,v),T(u,v)) also satisfies
(C.2). We claim that

7(t, go + 1, yo, A) = Ry r(t, o,Ry yo,A). (C.8)

Lets assume for the moment that (C.8) is true. Since (u, v) satisfies (C.2), by (h4)\ and
(C.8) we have

T"(u,v)(0o + , yo)=

= 1 -A X(oo + 1 +u,U(Oo + 1 +,'7(0,o + 1,yo,A)),

77(o, o + 1, yo,A )),v(Oo + 1 + ,,7(o, Oo + 1,yo, A)),A )do =

_e- A -RX(0o + a, R.u(Oo + 1 + a, q(a, go + 1,yo, A)),

Rj(a 0o + 1,yo, A)), R.v(0o + 1 + a, 7(a,o + 1,yo, A)), ) do

= R, j e-AaX(Oo + a, u(Oo + o, Ry77(a, Oo + 1, yo, A)),

77(a, ,o,Ryyo, A)), v(Oo + ,, R7(a, ,o + 1, yo, A)), A) d,

= R,, e-AiX(o + a, u(0o + a, rj(a, 00, Ryyo, A)),

r1(a, go, Ryyo, A)), v(6o + a, 77 (a,, o, Ryyo, A)), A) da

= R.T(u, v)(Oo, Ryyo)
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In other words we have proved

T,,(u,v)(9o + 1,yo) = RT,,T(u,v)(9o,Ryo) (C.9)

In a similar fashion we can show

T,,(u, v)(9o + 1, yo) = RTv,(u, v)(9o, Ryyo) (C.10)

In order to complete the proof we check that (C.8) is correct. Let us consider the
function

f7*(t) = Rn77(t,Oo,Ryo). (C.11)

Then q7*(O) = yo, and since (u,v) satisfies (C.2) and Y satifies (h4)\ we have

dr/* dl

dt - y (t, 0o, 9 yyo)

=RBY7 I(t, 9o, RYyo) + RyY(Oo + t, u(90, i7), 7, v(0o + t, 7), A)

=B7* + Y(Oo + 1 + t, R u(9o + t, ,7), Ry7, Rv(Oo + t, 7),A)

=B* + Y(9o + 1 + t, u(9o + 1 + t, 77*), 77*, v(Oo + 1 + t, 77*), A)

Then, by uniqueness of the solution of (C.5) we have

r1*t)= 77(t,9o +1, yo,A ),

i.e. (C.8) is satisfied.
We now show that a constant K exists so that given (u, v) E 'H1 that satisfies (C.3)

the functions (T,,(u, v), T,(u, v)) also satisfies (C.3). We will use the following result on
the behaviour of ?7(t, 90, yo, A) that can be prove using the ideas given in f9), Lemma 3:
for A small enough and (u, v) E 1-0 we have

77(t, 9o, Yo, A) -- e2y1t I yo I (C.12)

IL77(t, o,yo,A) 1< e2 -Y 'tI (C.13)

I -7(t, 90, o, A) 1 (1+ It 1)e2,,ItI11 yo (C.14)

The constant -y has been chosen so that -a+2-y(p+2) < 0 where a and -a are lower and

upper bound for the real part of the eigenvalues of the matrices A and C respectively.
We have to find K so that if (u, v) satisfies (C.3) then T(u, v) also satisfies (C.3).

Let g(9o,yo) = Tu(u,v)(go,yo), then we have

(90yo = e-AU { +XO -- O +7 OX U077

ag(0,Y) 0 -A ax u ,9?7 a.x a?7  axa a. C.5
57 e ax -ay + -5Y aoyy +-y o jy O(yC 15)
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From (C.3) and (C.12) we have

au (Oo + a,7(a, Oo,yo,A)) 1 K I 77(a, Oo,yo,A) I< Ke2 p-1 "1 I YO Ip, (C.16)

and by integrating (C.3) we obtain

K

Iu(Oo,yo)I 5 K I Yo Ip+I  (C.17)

and

Sv(eoYo)l -- K I Yo I'+ .  (C.18)

Let us estimate the middle term in (C.15). Noting that X is of class C 2, by the Mean
Value Theorem and using (h3),x, we see that for A small enough

ax ax( °
I -- (Oo + a,u,7,v,A) - a-(Oo + a,0,7,0,A) I<

< -+{ u (9o + o, (o,,o,yo,A)) I + I v(Oo + o,,(o,,o, yo, A)) I} (C.19)
2

< K I 77(o,Oo,yo,A) IP+1

< Ke2"y(p+1)1 o I O +

here we used (C.12), (C.17) and (C.18). Then, by (h5),\, (C.13) and (C.19) we obtain

e-Ao' a rf 0  e(a-2y)or(c + Ie - 2 ( + l)a I yo 1) dt} I yo IP (C.20)
cc ay ay 0

Choose K so that

e(a-2-y)acda < K (C.21)

and choose 64 so that,

] 64 e(a-2-(p+2))0-do, <1 (C.22)

Then, from (C.20), (C.21) and (C.22) we conclude that for all I yo 1 5 64

[0 oy I -5- I ydo I" • (C.23)

Now we estimate the first term in the right hand side of (C.15). By (C.13) and (C.16)
yX au Yl 0 (C.24)

I e - o do 1< ( 5 _-+ " 1- I do,) I yo C .24
00 -5x ay a 0- .- X
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From (h3)\ and by restricting A if necessary, we have

Se(a-2y(p+))a IOx I d (C.25)

and then from (C.24) and (C.25)

0  A jx7y a 1:K I yo oo' (C.26)

In an analogous fashion we can prove that

0 -A ax ov oq K0 e-A y d 3< K (C.27)
Ioe Oz Oy Oy d 31 ~-Io

Thus, from (C.18), (C.23), (C.26) and (C.27) we see that there is 65 > 0 and K so that
for all j yn I 5

ag (0o,yo) I K Iyo IP . (C.28)

A similar argument can be given to show that if h(Oo,yo) = T,(u, v)(0o,yo) then

Oh
I F (0o,yo) 1< K I yo 1P . (C-29)

In order to show that the derivative with respect to 9 of g and h satisfies condition (C.3)
we proceed in a similar fashion. We may need to reduce further A and increase K. We
omit the details. 0

7
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